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ABSTRACT: In reduced representation bisulfite sequenc-
ing (RRBS), genomic DNA is digested with the restriction
enzyme and then subjected to next-generation sequenc-
ing, which enables detection and quantification of DNA
methylation at whole-genome scale with low cost. How-
ever, the data processing, interpretation, and analysis of
the huge amounts of data generated pose a bioinformatics
challenge. We developed RRBS-Analyser, a comprehen-
sive genome-scale DNA methylation analysis server based
on RRBS data. RRBS-Analyser can assess sequencing
quality, generate detailed statistical information, align the
bisulfite-treated short reads to reference genome, identify
and annotate the methylcytosines (5mCs) and associate
them with different genomic features in CG, CHG, and
CHH content. RRBS-Analyser supports detection, anno-
tation, and visualization of differentially methylated re-
gions (DMRs) for multiple samples from nine reference or-
ganisms. Moreover, RRBS-Analyser provides researchers
with detailed annotation of DMR-containing genes, which
will greatly aid subsequent studies. The input of RRBS-
Analyser can be raw FASTQ reads, generic SAM format,
or self-defined format containing individual 5mC sites.
RRBS-Analyser can be widely used by researchers want-
ing to unravel the complexities of DNA methylome in the
epigenetic community. RRBS-Analyser is freely available
at http://122.228.158.106/RRBSAnalyser/.
Hum Mutat 34:1606–1610, 2013. C⃝ 2013 Wiley Periodicals, Inc.
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Introduction
DNA methylation has important functions in the regulation

of gene expression during various biological processes, such as X
chromosome inactivation, genomic imprinting, embryogenesis, and
maintenance of genomic integrity [Bird, 2002; Harris et al., 2010].
Aberrations in DNA methylation have been implicated in many dis-
eases and traits, such as autoimmune disorders, aging, and cancer.
Typically, DNA methylation occurs at the 5′-carbon position of cy-
tosine within a CpG dinucleotide in plants and mammals, although
it also occurs at CHH and CHG cytosines. For decades, the gold
standard for DNA methylation analysis has been bisulfite sequenc-
ing based on traditional Sanger sequencing [Warnecke et al., 2002].
Bisulfite treatment of DNA, followed by PCR amplification, leads
to a chemical conversion of unmethylated Cs to Ts, while leaving
methylated Cs unchanged [Frommer et al., 1992]. However, this
procedure is very laborious and time-consuming, and is, therefore,
inappropriate for high-throughput studies.

Currently, next-generation sequencing (NGS) has been widely
applied to characterize DNA methylation, because of its capacity
to generate massive amounts of data in a short time, which pro-
vides an unprecedented opportunity to discover DNA methylation
sites on a genome-wide scale (DNA methylome) [Ku et al., 2011].
RRBS (reduced representation bisulfite sequencing), which com-
bines NGS, bisulfite conversion, and restriction enzyme digestion,
is an efficient method for investigating DNA methylation at single-
nucleotide resolution with higher efficiency and lower cost in com-
parison with whole-genome bisulfite sequencing [Meissner et al.,
2005]. It enriches genome areas with a high CpG content, which
greatly reduces the sample DNA required. The improved bisulfite
treatment protocol of RRBS also optimizes the conversion of un-
methylated cytosines and minimizes the DNA loss due to bisulfite-
induced degradation. Therefore, it is highly sensitive and provides
quantitative DNA methylation measurements. However, the massive
amount of data generated by NGS poses a great bioinformatics chal-
lenge in terms of data processing and analysis. Recently, a number of
computational methods have been developed for mining the DNA
methylation data generated by NGS, such as RRBSMAP [Xi et al.,
2012], BS Seeker [Chen et al., 2010], Bismark [Krueger and Andrews,
2011], PASH [Coarfa et al., 2010], RMAP [Smith et al., 2009], BRAT-
bw [Harris et al., 2012], SAAP-RRBS [Sun et al., 2012], methylKit
[Akalin et al., 2012], Meth Tools 2.0 [Grunau et al., 2000], Methyl-
Analyzer [Xin et al., 2011], BSmooth [Hansen et al., 2012], Epi-
Explorer [Halachev et al., 2012], GBSA [Benoukraf et al., 2013],
and QDMRs [Zhang et al., 2011]. Among them, RRBSMAP is a
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short-read alignment tool for handling RRBS data [Xi et al., 2012].
It uses wildcard alignment to enhance the computational efficiency
of large-scale epigenome association studies performed with RRBS.
SAAP-RRBS integrates read quality assessment, alignment, methy-
lation data extraction, annotation, and visualization of RRBS data
[Sun et al., 2012]. methylKit is an R package that performs cluster-
ing, sample quality visualization, differential methylation analysis,
and annotation for both whole-genome data and RRBS data [Akalin
et al., 2012].

In this study, an integrated platform, RRBS-Analyser, is developed
to support comprehensive DNA methylation analyses in multiple
organisms, which supports more functionality compared with the
tools mentioned above. First, RRBS-Analyser provides a detailed as-
sessment of the quality of the short reads, including CG dinucleotide
distribution, distribution of reads with varied GC content, and
length distribution of clean reads. Second, RRBS-Analyser detects
and annotates methylcytosines (5mCs), showing global alignment
information; detailed annotation of 5mC in CG, CHG, and CHH
nucleotides; and bisulfite conversion rates. Furthermore, RRBS-
Analyser supports multiple sample analyses, which is convenient
for flexible differentially methylated region (DMR) detection and
annotation. Additionally, RRBS-Analyser provides researchers with
detailed annotation of DMR-containing genes, which will greatly
aid subsequent experimental or bioinformatics studies.

RRBS-Analyser Analysis Workflow

Bisulfite-Treated Short Reads Quality Assessment

The procedure used by RRBS-Analyser to analyze the DNA
methylome from RRBS data is detailed below. First, RRBS-
Analyser filters low-quality reads using Trim Galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). Then, 3′/5′

adapters are trimmed using Cutadapt (http://code.google.
com/p/cutadapt/) implemented in Trim Galore. The remain-
ing data are defined as clean reads generated after removing
adapters and low-quality base from raw reads. Last, FastQC
(http://galaxy.csdb.cn:8000/tool_runner?tool_id=fastqc) is used to
display quality information for clean reads.

5mCs Detection and Annotation

RRBS-Analyser employs RRBSMAP [Xi et al., 2012] for bisulfite-
treated short reads alignment, and the binomial test with false dis-
covery rate (FDR) constraint to identify the position of 5mCs from
the alignment results file [Li et al., 2010; Lister et al., 2009]. Dur-
ing this procedure, the most frequent problems encountered that
affect the detection of methylation are incomplete bisulfite conver-
sion of cytosines and sequencing errors. To improve the accuracy
of 5mCs identification, the minimum sequence depth threshold
is determined at a cytosine position by the binomial probability
distribution. Once the procedure of identified 5mC is completed,
RRBS-Analyser creates a file to store the basic statistical informa-
tion, including mapping information, methylation information, and
bisulfite conversion rate. The bisulfite conversion rate is estimated
through non-CG methylation status [Li et al., 2010]. In addition,
RRBS-Analyser displays distribution of sequencing depth and re-
striction fragment lengths.

Subsequently, RRBS-Analyser displays detailed methylation in-
formation on different gene regions, such as 3′-UTR, 5′-UTR,
CDS, introns, promoter (1,200 bp upstream and 300 bp down-
stream of the transcriptional start site), and repeat elements (such

as LINE, SINE, satellite, simple repeat, and LTR), CpG islands, and
intergenic regions. These annotations are downloaded from UCSC
(http://genome.ucsc.edu/). Annotation of 5mCs is based on the
association of the chromosome coordinates of 5mCs with the cor-
responding genomic annotation information.

DMR Detection and Annotation

The sliding window method is used to identify DMRs with a
defined window size (default 200 bp) and a defined step size (default
10 bp) based on hypothesis test methods. In brief, the input genomic
regions are broken down into overlapping fragments of equal length
across the RRBS-selected regions. In each sliding window, regions
that satisfy the following criteria are selected for further statistical
testing: (1) each site in different samples of aligned reads meets
the user-defined coverage threshold (default 4); (2) the number of
selected type of cytosines (C/CG/CHG/CHH) should be larger than
the user-defined value (default 5); and (3) the fold difference of
mean methylation level (the maximum/minimum among samples
for each region) should be larger than the user-defined value (default
1.5). Fold difference is calculated from expression (1) and (2) as
follows:

Methylation level =
mC(#)

mC(#) + umC(#)
(1)

Fold difference =
maximum methylation level

minimum methylation level
(2)

where mC (#) and umC (#) represents total number of methylated
and unmethylated cytosines, respectively, from clean reads in given
sliding window. Methylation level of corresponding sliding window
region in each sample is calculated through expression (1). The
maximum and minimum methylation level is then determined in
sliding window from multiple samples, respectively. Last, the fold
difference is calculated by expression (2).

For statistical testing of two or more samples, several statistical
methods (Table 1), including both parametric modules and non-
parametric modules, can be selected to identify DMRs. After the
hypothesis tests are carried out, regions with P values less than
the cut-off value (default 0.01) can be defined as putative DMRs.
To control the FDR, P values of putative DMRs are corrected us-
ing the method proposed by Benjamini and Hochberg (1995) to
filter out those regions with FDR values larger than the cut-off
value (default 0.01). To extend adjacent candidate DMRs, regions
closer than selected length (default 100 bp) are merged. Once the
DMRs are identified, BEDTools is implemented for flexible annota-
tion of DMRs by comparing the chromosome coordinates of DMRs
with the corresponding annotation information in GFF/GTF/BED
format [Quinlan and Hall, 2010].

Table 1. The Statistics Approaches Implemented in DMR
Detection

Statistics method Statistic model Number of samples

T test Parametric Two
Wilcoxon test Nonparametric Two
Chi-square test Nonparametric Two
Fisher test Nonparametric Two
ANOVA Parametric Three or more
Kruskal–Wallis test Nonparametric Three or more
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Figure 1. Snapshot of the results of RRBS-Analyser. A: FASTQ, SAM, or MC files are loaded as input along with several user-selected options.
B: Quality assessment of raw data. C: Basic statistical information containing alignments, methylation, and bisulfite conversion rate. D: Detailed 5mC
annotation information on different genomic features. E: The resulting DMR output, including DMR-associated genes, annotation, and visualization
of DMR data in the genome browser or in the IGV programme with the “wig” format.

Data Input

RRBS-Analyser provides a simple and intuitive interface to al-
low users to flexibly analyze the DNA methylome generated from
high-throughput sequencing (Fig. 1). The input requirement of
RRBS-Analyser can be: (1) raw FASTQ reads, either single-end or
paired-end produced by Illumina Solexa; (2) an alignment result
in the generic SAM format [Li et al., 2009]; or (3) a MC file con-
taining individual 5mC sites in the self-defined format, which con-
siderably reduces the input size. To further reduce the input size,
all input files can be compressed into .tar, .tar.gz, .gz, or .tar.bz2
formats. Notably, we found that the input size can sometimes be

larger than 100 Mb for a MC file obtained from RRBS of hu-
man samples. Therefore, RRBS-Analyser has implemented the Box
(https://www.box.com/), which is a cloud-based file storage and
sharing service operating through a Web service application. In ad-
dition, users can also upload the data via our File Transfer Protocol
(FTP) server, a link for which is available on the RRBS-Analyser Web
server.

After successfully uploading the data to the Box or by FTP, users
need to input the corresponding file name as a unique identifier
of an uploaded file (for multiple samples, each file name must be
separated by a comma).
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Data Output

The RRBS-Analyser results can be retrieved by an assigned job ID,
which is generated immediately after the data are uploaded success-
fully. A typical output contains four sections: quality assessment,
basic statistics, 5mC sites annotation, and DMR result (Fig. 1).
These sections are well organized with examples to help users with
the correct input and to demonstrate the expected results.

The first section gives an overview of the raw reads quality, in-
cluding CG dinucleotide distribution for all reads, practical and
theoretical distribution of reads with varied GC contents, length
distribution of clean reads filtered for adapters/low-quality bases,
and base quality distribution.

The basic statistics section contains three parts: (1) global align-
ments information, which shows the number of raw reads and clean
reads, the proportion aligned, the proportion uniquely aligned, and
the number of mismatched raw reads; (2) methylation informa-
tion, including overall methylation level (as CG/CHG/CHH), the
number of 5mCs, and cytosines that match the reference genome as
CG/CHG/CHH; and (3) the proportion of bisulfite conversion to
indicate the conversion efficiency of bisulfite-treated DNA.

The annotation of 5mC sites section displays the 5mC sites list and
detailed annotation information of methylated sites. First, RRBS-
Analyser categorizes cytosines into CG, CHG, and CHH content to
show their mean methylation levels. To further describe the quan-
tity distribution of cytosines that are methylated or matched to
the reference genome, RRBS-Analyser divides the methylation level
into five scales: 0%–20%, 20%–40%, 40%–60%, 60%–80%, and
80%–100%. Meanwhile, the methylation status in distinct genomic
features is described as follows: quantity distribution of different
methylation levels in functional elements and methylation levels in
different functional elements.

The detailed DMR annotation information will be generated
if users provide multiple samples. In this section, RRBS-Analyser
shows DMR length distribution, a boxplot based on the methyla-
tion levels of DMRs (showing the DMR distribution at different
methylation levels), and the DMR distribution in different func-
tional elements and DMR-associated genes. RRBS-Analyser also
provides the DMR coordinates, its associated gene region, mean
methylation level, and sequencing depth, as well as P values and
q values between different samples. To show the DMR cluster infor-
mation, heatmap.2 in the R package is implemented to perform link-
age hierarchical clustering of the methylation level for each DMR.
RRBS-Analyser also provides the DMR information in the “wig”
format, which can be used to display continuous DMR data in the
UCSC genome browser or the integrative genomics viewer (IGV)
program.

Implementation

RRBS-Analyser is constructed under an Apache/PHP/MySQL en-
vironment on the Red Hat Enterprise 5.5 Linux operating system.
The back-end pipeline is implemented in Perl and R languages
(http://www.r-project.org), which is run in parallel to accelerate
the analysis process. All the plots are generated by R plot pack-
ages. The uploaded data will be analyzed on our high-performance
computer with five computational nodes, each node containing
four Quad-Core AMD processors (2.2 GHz each) and 32 GB of
RAM. Meanwhile, RRBS-Analyser has a queuing module to control
user-submitted jobs, which executes two jobs in parallel, with the
remainder being put into a queue. When the submission is finished,
the server will provide users with a job ID number, which can be
used to retrieve the results once the job is finished or to reanalyze

the data submitted previously. The Web client of RRBS-Analyser
is implemented independently of operating systems and has been
successfully tested with Microsoft Internet Explorer 8.0, Firefox 2/3,
Google Chrome 24.0, and Safari 6.02 (under different versions of
Linux, Microsoft Windows, and MacOS).

Perspectives
Rapid advances in NGS technologies have greatly facilitated

genome-wide DNA methylome research [Meaburn and Schulz,
2012]. RRBS combines DNA digestion and size selection to per-
form high-throughput sequencing of a reproducible subset of the
genome. It is indicated to be accurate and cost-efficient for DNA
methylation studies at single-base resolution [Wang et al., 2012].
However, the vast amount of data generated by NGS poses multiple
challenges for efficient data processing. At present, although many
tools have been developed to process and analyze DNA methylation
sequencing data, there are still no public online services available
for comprehensive analysis of RRBS data. In addition, those tools
that are available often need complex installation, redundant opera-
tions, and high-performance computational capability, and are not
user-friendly for nonbioinformaticians.

Therefore, we have developed a novel and comprehensive plat-
form, RRBS-Analyser, for the analysis of whole-genome shotgun
RRBS data, which allows quality assessment of bisulfite-treated
short reads, and detects and annotates 5mCs, as well as detecting
and annotating DMRs based on multiple samples. We found that
uploading large-size data is technically difficult during the develop-
ment of RRBS-Analyser. Box cloud storage technology, which is an
online file sharing and cloud content management service, is excel-
lent for large-size data transmission. Thus, in RRBS-Analyser, Box
storage technology is implemented for users to upload their RRBS
sequencing data conveniently. In addition, FTP transmission is also
supported by RRBS-Analyser. RRBS-Analyser is freely available for
noncommercial use and will be updated regularly to keep up with
the latest resources of the implemented databases. Currently, RRBS-
Analyser can only analyze RRBS data based on the methylation
insensitive enzyme MspI; more enzymes will be supported in future
updates of the platform. As the Internet is constantly changing, a
public interface that will be more suitable to cloud-based systems
may emerge in the future; RRBS server will be updated and sup-
port the interface for the users. Additionally, RRBS-Analyser only
supports nine reference genomes; more reference genomes will be
added in the future.

Conclusion
We believe that RRBS-Analyser provides the scientific community

with an integrated infrastructure for genome-wide investigation of
DNA methylation, based on the large amount of data generated by
RRBS, and it will be very useful for studies in the field of epigenomics.
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Introduction

Non-coding RNA (ncRNAs) has been increasingly recognized 
as an important molecular in the past few years.1 Among them, 
microRNA (miRNA) is small, approximately 19–25 nt RNA 
molecule, which is involved in post-transcriptional regulation of 
gene expression. It plays important roles in regulation of numer-
ous biological processes, such as development, cell differentia-
tion and proliferation, apoptosis and metabolism.2 Small nuclear 
RNA (snRNA) is primarily involved in RNA splicing and assists 
in the regulation of transcription factors and maintains telo-
meres.3 Small nucleolar RNA (snoRNA) plays a crucial role in 
modification of target RNAs and processing of rRNA during 
ribosome subunit synthesis.4 Piwi-interacting RNA (piRNA), an 
approximately 24–31 nt RNA molecule, plays an important role 
in regulation of cell division and maintenance of germline stem 
cells.5 A recent study showed that piRNA is also involved in epi-
genetic control of memory-related synaptic plasticity in neural 
cells.6

Next-generation sequencing (NGS) has been widely applied 
to characterize small RNA transcriptomes under various con-
ditions. It provides an unprecedented opportunity to discover 
ncRNAs and identify differentially expressed ncRNA tran-
scripts.7 However, the massive amount of data generated by NGS 

Next-generation sequencing has been widely applied to understand the complexity of non-coding RNAs (ncRNAs) 
in a cost-effective way. In this study, we developed mirTools 2.0, an updated version of mirTools 1.0, which includes 
the following new features. (1) From miRNA discovery in mirTools 1.0, mirTools 2.0 allows users to detect and profile 
various types of ncRNAs, such as miRNA, tRNA, snRNA, snoRNA, rRNA and piRNA. (2) From miRNA profiling in mirTools 
1.0, mirTools 2.0 allows users to identify miRNA-targeted genes and performs detailed functional annotation of miRNA 
targets, including Gene Ontology, KEGG pathway and protein-protein interaction. (3) From comparison of two samples 
for differentially expressed miRNAs in mirTools 1.0, mirTools 2.0 allows users to detect differentially expressed ncRNAs 
between two experimental groups or among multiple samples. (4) Other significant improvements include strategies 
used to detect novel miRNAs and piRNAs, more taxonomy categories to discover more known miRNAs and a stand-alone 
version of mirTools 2.0. In conclusion, we believe that mirTools 2.0 (122.228.158.106/mr2_dev and centre.bioinformatics.
zj.cn/mr2_dev) will provide researchers with more detailed insight into small RNA transcriptomes.

mirTools 2.0 for non-coding RNA discovery, 
profiling and functional annotation based  

on high-throughput sequencing
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poses great bioinformatics challenges for detection and functional 
annotation of ncRNAs. Therefore, a number of computational 
methods have been developed for mining small RNA sequencing 
data. Among them, many tools have mainly focused on miRNA 
analysis, such as miRDeep,8-10 Mireval,11 miRFinder,12 miR-
NAkey,13 miRanalyzer,14 miRExpress,15 miRTRAP,16 DSAP17 
and MIReNA.18 In addition, several integrated ncRNA analy-
sis tools have been released, such as SeqCluster,19 DARIO,20 
ncPRO-seq,21 CPSS,22 Shortran,23 NORAHDESK,24 APART25 
and smyRNA.26

We previously developed a web service, mirTools 1.0, which 
provides annotation of miRNAs based on NGS and has been 
widely used.27 Comprehensive comparison and evaluation of bio-
informatics tools for miRNA deep-sequencing has indicated that 
mirTools 1.0 has a good performance for miRNA coverage, accu-
racy and sensitivity, as well as computational time.28 However, in 
the past 2 y, we have received considerable feedback from users. 
These users expected us to update mirTools to include more ver-
satile functions, such as miRNA-targeted genes and further func-
tional annotation, other types of ncRNAs besides miRNAs and 
multiple sample comparison. Therefore, in this study, an inte-
grated web server, mirTools 2.0, an updated version of mirTools 
1.0, was developed to investigate ncRNA sequences, expression 
levels, differentially expressed ncRNAs and miRNA-targeted 
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contains the miRNA name, arm on the hairpin, absolute count, 
relative count, pre-miRNA number (hairpin secondary structure 
for novel miRNAs) and related expression information of the 
most abundant tag. In addition, users can view the read mapping 
information and miRNA isoforms in a pop-up webpage by click-
ing the “pre-miRNA” link.

The miRNA targets output contains the predicted miRNA-
targeted genes and their functional annotation with GO, the 
KEGG pathway and the PPI network. The miRNA-targeted 
genes tables display the miRNA name, the targeted gene name, 
the minimum free energy, the score value (P value for RNAhybrid) 
and target prediction tool used. The known miRNA-targeted 
genes tables also contain the “other tools” column to indicate 
whether the targets are supported by other tools. The GO and 
KEGG pathway annotation tables illustrate the enriched GO 
terms and pathway terms of targeted genes predicted, respec-
tively, which can be sorted by enrichment fold and P value. The 
PPI annotation tables depict the protein interaction information 
of miRNA targets in STRING databases. Users can visualize the 
interaction intuitively in the implemented Cytoscape Web, which 
supports node dragging and searching, by clicking the “show the 
network in Cytoscape” link.

The ncRNA output shows information of other ncRNAs, 
except for miRNAs and their expression level. Information on the 
identified known piRNAs and novel piRNAs are also included in 
this output. The detailed annotation of each ncRNA contains 
the ncRNA name, absolute count, relative count, hairpin number 
and related expression information of the most abundant tag.

In a two-sample study, the differential expression output con-
tains expression correlation dot charts and differentially expressed 
ncRNAs lists between the two samples. The annotation informa-
tion of the differential expression list contains the ncRNA name, 
sample “a” relative count, sample “b” relative count, the fold 
change, the up/down tag and the P value. In group case results, 
differentially expressed ncRNAs between two groups are listed. 
The annotation information of the group expression list also con-
tains the expression value of each sample, the median expression 
value of the group, the up/down tag and the statistical P value. 
All these components are well organized with examples to facili-
tate users with correct input and expected results.

Discussion

NGS has greatly facilitated RNA transcriptome studies, among 
which small RNA sequencing offers a cost-effective and in-depth 
method to comprehensively investigate ncRNAs in a genome-
wide manner.7 However, one of the main challenges lies with the 
analysis of miRNAs and other ncRNAs from the large amount 
of sequencing data. The web server mirTools 2.0 was developed 
for research communities toward a fully automated and easy to 
use web service suitable for ncRNA discovery, profiling and func-
tional annotation based on high-throughput sequencing.

The web server mirTools 2.0 is freely available for non-com-
mercial use and will be updated regularly to keep up with the 
latest annotation information of the implemented databases. 
In mirTools 1.0, we received a lot of valuable feedback and 

genes and their functional annotation, which will be valuable for 
deciphering the functional roles of ncRNAs hidden in the large 
amount of NGS data.

Results and Discussion

Implementation. The web server mirTools 2.0 is constructed 
under the Apache/PHP/MySQL environment in the Linux sys-
tem. The back-end pipeline is implemented in Perl language 
and the plots are generated by R packages (www.r-project.
org). Compared with mirTools 1.0, the computational power 
of mirTools 2.0 has been enhanced and it is equipped with 
four Quad-Core AMD processors (2.2 GHz each) and 32 GB 
of RAM. It will only take approximately 30 min to detect and 
quantify ncRNAs for a given sample (~10 Mb size). Additionally, 
the queuing module can execute more jobs in parallel.

Data input. The web server mirTools 2.0 provides more func-
tional modules than mirTools 1.0, including a single case, two 
cases, group cases and re-analysis. The single case module allows 
users to detect various types of known and novel ncRNAs, and 
performs functional annotation of the miRNA-targeted genes for 
a single sample. Two cases and group cases modules allow users 
to identify differentially expressed ncRNAs between or among 
samples. The re-analysis module is designed to allow users to 
run previously submitted data with adjustable parameters, which 
avoids resubmitting the sample data.

In single case and two case modules, similar to mirTools 1.0, 
the input of mirTools 2.0 is a trimmed FASTA file where all the 
identical raw reads are aggregated and cleaned into a non-redun-
dant FASTA file to reduce the input size. To further reduce the 
input size, the FASTA file can be compressed in rar, zip or gz for-
mats, with a maximum size of 30 Mb. In addition, mirTools 2.0 
supports the input of original mapped reads in SAM/BAM for-
mat, which can be generated by many public alignment software, 
such as Bowtie (bowtie-bio.sourceforge.net) and BWA (bio-bwa.
sourceforge.net). In the group case module, the expression table 
files of ncRNAs are required, which can be obtained from the 
single case and two case modules. Users can directly input a 
single case analysis job ID and the web server will retrieve the 
corresponding expression table file automatically. In all modules, 
the mail address is optional and the web server will give users a 
job ID, which can be used to retrieve the results once the job is 
finished or to reanalyze the data submitted previously.

Data output. The mirTool 2.0 results are presented in intuitive 
HTML pages, of which a typical output consists of six parts: basic 
statistics, annotation, miRNA, miRNA targets, ncRNA and dif-
ferential expression (Fig. 1). The basic statistics output contains 
length distribution charts of short reads, pie charts summary of 
reference genome mapping and the chromosome distribution. 
The annotation output includes pie charts of mapped reads with 
different functional categories, ncRNA distribution and repeat-
associated RNA distribution. The web server mirTools 2.0 plots 
the unique read distribution and its expression levels (the number 
of reads for each tag reflects its relative abundance).

The miRNA output consists of known miRNAs and puta-
tive novel miRNAs. The detailed annotation of each miRNA 
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regardless of whether compression is involved. Therefore, we have 
developed a stand-alone version of mirTools 2.0 to allow users 
to run it on their own server. In the future, we will design an 
FTP module to allow users to submit larger data to enhance the 
usability of web server. In conclusion, we believe that mirTools 
2.0 will provide the scientific community with an integrated web 
server to assist research for identifying various types of ncRNA, 
profiling expression levels, predicting miRNA targeted genes and 
functional annotation based on the large amount of data gener-
ated from NGS.

suggestions from users worldwide, and this feedback has been 
helpful for developing mirTools 2.0. Therefore, we sincerely 
welcome questions, comments and suggestions, which will be 
useful for feedback for the enhanced function of mirTools 2.0. 
Currently, mirTools 2.0 can only detect the known ncRNAs, 
novel miRNAs and novel piRNAs. In the future, we will develop 
or incorporate a tool to predict other type of novel ncRNAs. In 
the meantime, phylogenetic conservation analysis of ncRNAs 
across different species will be provided. Considering the net-
work limits, currently, the maximum file upload size is 30 Mb, 

Figure 1. Output screenshots of mirTools 2.0. The output includes: (1) basic statistics, such as length distribution, percentage of reads aligned to the 
reference genome, chromosome distribution, functional categories of reads and ncRNA distribution; (2) known miRNA, putative novel miRNA, miRNA 
isoforms and modification; (3) miRNA-targeted genes and functional annotation based on GO, the KEGG pathway and the PPI network; (4) expression 
information of other types of ncRNA, such as rRNA, tRNA, snRNA, snoRNA and piRNA; and (5) differentially expressed ncRNAs between two cases, two 
experimental groups or among multiple samples.
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for downloading intermediate annotation results and the final 
results.

Discovery and profiling of known and novel ncRNAs. To 
identify known and novel ncRNAs, sequence reads are first 
aligned to the reference genome using the SOAP program.29 
Subsequently, aligned reads are associated with the annotation 
information of several public databases. In addition to miRBase 
(www.mirbase.org), Rfam (rfam.sanger.ac.uk), repeat database 
produced by RepeatMasker (www.repeatmasker.org) and cod-
ing genes of the reference genome, piRNA from the piRNABank 
database (pirnabank.ibab.ac.in) is also incorporated to identify 
known piRNAs. Currently, mirTools 2.0 is compatible for use 
with 32 reference genomes across vertebrates, insects, deutero-
stomes, nematodes and plants. The aligned reads are classified 
into known miRNAs, other types of ncRNAs, known piRNAs, 
repeat-associated RNA and mRNAs. miRNA isoforms and 
modification can be obtained through changing the mismatch 

Materials and Methods

Overview of the workflow of mirTools 2.0. The overall work-
flow of mirTools 2.0 is shown in Figure 2. Briefly, mirTools 
2.0 filters out raw reads to exclude low quality and 3/5' adap-
tor sequences and trim them into clean reads. Clean reads are 
then mapped onto the reference genome and mapping results 
are converted into the SAM/BAM format with SAMtools 
(samtools.sourceforge.net) to serve as a generic alignment for-
mat compatible with different alignment tools. Based on public 
resources, the mapped reads are annotated and classified into 
known ncRNAs. Novel miRNAs and piRNAs will be pre-
dicted from unclassified aligned reads. miRNA-targeted genes 
and further functional annotations are conducted for both 
known and novel miRNAs based on a number of implemented 
tools. Finally, all the results are shown in different types of 
tables and figures on an HTML page, and these are available 

Figure 2. The overall workflow of mirTools 2.0. The workflow includes clean and filtering raw reads, alignment of them to the reference genome, 
classification of aligned reads, detection of expression levels of various types of ncRNAs and the differentially expressed ncRNAs between two cases/
two experiment groups or among multiple samples, prediction of novel miRNAs and piRNAs, identification of miRNA targeted genes and further 
functional annotation based on GO, the KEGG pathway and the PPI network.
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STRING database.34 Visualization of the PPI network can be 
conducted using the implemented Cytoscape Web tool, which is 
an interactive web-based network browser that allows easy dis-
playing of graphs.35

Detection of differentially expressed ncRNAs. To determine 
the relative ncRNA expression level and its abundance, each iden-
tified ncRNA read count is normalized to the total read count of 
its belonging type of ncRNA to obtain reads per million (RPM) 
value. Similar to mirTools 1.0, mirTools 2.0 has two strategies 
to estimate the expression level of a given ncRNA: the relative 
total read count and the most abundant read (often considered 
as mature miRNA). To detect differentially expressed ncRNAs 
between two samples, the Bayesian method is used to calculate 
the statistical significance (P value) based on the relative total 
read count and most abundant read count.36

In addition, we developed a group case module, which can 
compare the difference within and between experimental groups 
with multiple replicates or samples. If a specific experimen-
tal group has two conditions, the Wilcoxon Rank-sum test is 
applied to infer the statistical significant difference. If a specific 
experimental group has more than two conditions, the Kruskal-
Wallis H test is applied to infer the statistical significant dif-
ference. The Wilcoxon Rank-sum test is used to identify the 
differentially expressed ncRNAs between experimental groups. 
In all conditions, at default, a specific ncRNA is considered to be 
differentially expressed with a P value < 0.01 and a fold change 
> 2.
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number in the SOAP program. The ncRNAs reads annotated 
by Rfam are further classified into sRNA, tRNA, snRNAs and 
snoRNA.

The unclassified aligned reads termed as “unclassified” are 
used to detect novel miRNAs and piRNAs. In mirTools 1.0, 
we used the miRDeep program to predict novel miRNAs. In 
mirTools 2.0, we implemented a new version of miRDeep9 to dis-
cover novel miRNAs. We also implemented another broadly used 
program, Mireap (sourceforge.net/projects/mireap), which com-
bines secondary structure, minimum free energy, Dicer cleavage 
site, small RNA position and depth, to discover novel miRNAs 
from NGS.28,30 During this process, the secondary structures are 
predicted using the RNAfold program in Vienna RNA package 
(www.tbi.univie.ac.at/RNA). The remaining unclassified reads 
are used to detect novel piRNAs using a k-mer scheme, which 
has been indicated to be high accuracy and specificity for predict-
ing novel piRNAs.31

Identification of miRNA-targeted genes and functional 
annotation. To identify known and novel miRNA targeted 
genes, mirTools 2.0 implements two widely used tools miRanda 
(www.microrna.org) and RNAhybrid (bibiserv.techfak.uni-biele-
feld.de/rnahybrid/). In addition, miRNA-targeted gene results 
from another six tools or databases are also integrated, including 
TargetScan (www.targetscan.org), TargetSpy (www.targetscan.
org), miRNAMap (mirnamap.mbc.nctu.edu.tw), microT v4.0 
(diana.cslab.ece.ntua.gr/microT/), MicroCosm (www.ebi.ac.uk/
enright-srv/microcosm) and MirTarget2 (mirdb.org).

To explore the potential biological function of predicted 
miRNA-targeted genes, we annotated them with Gene Ontology 
(GO), the KEGG pathway and the protein-protein interaction 
(PPI) network. For GO analysis, the predicted targets are mapped 
to the GO annotation data set to extract their GO annotation,32 
and then Fisher’s exact test is used to perform GO enrichment 
analysis (enrichment ratio > 2 and P value < 0.01 at default). 
Pathway assignment information of miRNA-targeted genes is 
extracted from the KEGG pathway database33 and corresponding 
enrichment analysis is performed using the hypergeometric test 
(enrichment ratio > 2 and P value < 0.01 at default). Moreover, 
PPI annotation of miRNA-targeted genes is retrieved from the 
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ABSTRACT
Objectives Recently, several studies documented that
de novo mutations (DNMs) play important roles in the
aetiology of sporadic diseases. Next-generation
sequencing (NGS) enables variant calling at single-base
resolution on a genome-wide scale. However, accurate
identification of DNMs from NGS data still remains a
major challenge. We developed mirTrios, a web server,
to accurately detect DNMs and rare inherited mutations
from NGS data in sporadic diseases.
Methods The expectation-maximisation (EM) model
was adopted to accurately identify DNMs from variant
call files of a trio generated by GATK (Genome Analysis
Toolkit). The GATK results, which contain certain basic
properties (such as PL, PRT and PART), are iteratively
integrated into the EM model to strike a threshold for
DNMs detection. Training sets of true and false positive
DNMs in the EM model were built from whole genome
sequencing data of 64 trios.
Results With our in-house whole exome sequencing
datasets from 20 trios, mirTrios totally identified 27
DNMs in the coding region, 25 of which (92.6%) are
validated as true positives. In addition, to facilitate the
interpretation of diverse mutations, mirTrios can also be
employed in the identification of rare inherited
mutations. Embedded with abundant annotation of
DNMs and rare inherited mutations, mirTrios also
supports known diagnostic variants and causative gene
identification, as well as the prioritisation of novel and
promising candidate genes.
Conclusions mirTrios provides an intuitive interface for
the general geneticist and clinician, and can be widely
used for detection of DNMs and rare inherited
mutations, and annotation in sporadic diseases. mirTrios
is freely available at http://centre.bioinformatics.zj.cn/
mirTrios/.

INTRODUCTION
De novo mutations (DNMs), arising from meiosis
of the gametes of the parents (ie, sperm and egg)
and transmitted to their child, usually have severe
biological or phenotypic consequences when they
affect functionally important nucleotides in the
genome.1 DNMs represent the most extreme form
of rare genetic mutation and make these mutations
prime candidates for causing sporadic genetic dis-
eases that remain in a population despite the
reduced fecundity.2 3 The widespread availability of
next-generation sequencing (NGS), such as whole
exome sequencing (WES) and whole genome

sequencing (WGS), revolutionised the identification
of DNMs on a genome-wide scale. Attention
has been mostly focused on neuropsychiatric dis-
eases,1–5 such as autism spectrum disorders (ASDs),
schizophrenia, intellectual disability, and epileptic
encephalopathy. These studies serve as pioneers,
and many more large scale studies of other genetic
diseases (such as congenital heart disease6) by NGS
to identify risk-associated DNMs are underway.5 7

With the development of NGS, a number of compu-
tational methods that address multi-sample (typically
parent–offspring trios) variant detection and genotype
calling have been developed, such as SAMtools,8

GATK (Genome Analysis Toolkit),9 TrioCaller,10

VarScan,11 Famseq12 and VariantMaster.13 Among
them, FamSeq builds on Bayesian networks to
provide the probability for each genotype of each
variant using data from all familial members. These
methods greatly increase the power of inferring
genotypes and haplotypes, but if we directly apply
these methods for DNM calling, the false discovery
rate will be above 60%.14 The potential error
during PCR, sequencing and mapping may contrib-
ute to the false positive rate. In some cases,
assumed DNMs are actually inherited mutations
due to the low evenness in local genomic regions of
multiple samples. Subsequently, PolyMutt,15

DeNovoGear16 and DNMFilter17 were specifically
developed for DNM detection from trio-based
NGS. PolyMutt and DeNovoGear investigate all
available family members jointly based on likeli-
hood framework and likelihood-based error mod-
elling, respectively. Both algorithms relied on the
average mutation rate of each class of mutations
across the given genome, while de novo mutation
rates were found to vary strikingly across different
genomes and regions.18 DNMFilter is based on a
machine-learning filtering approach to identify
DNMs, the efficacy of which is sensitive to the
training set. Recently, Scalpel was specifically devel-
oped to detect de novo and transmitted insertions
and deletions (indels) in exome-capture data on the
basis of localised assembly.19 However, all the
above software require a certain level of computa-
tional skills that can handle installing, minor pro-
cessing of input raw data or even debugging when
incompatibility of datasets occurs. There are still
no public user-friendly online services available for
comprehensive analysis from family-based NGS
data in sporadic diseases. In this study, mirTrios, a
web server implementing the expectation–
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maximisation (EM) algorithm, was developed to accurately
identify DNMs from trio-based or family-based variant call file
(VCF) results from NGS in sporadic diseases.

Studies have revealed that rare inherited variants, existing in
homozygous, hemizygous, compound heterozygous, or domin-
ant heterozygous forms, also make substantial contributions to
sporadic diseases.20–23 Thus, the identification of rare inherited
mutations and the annotation of them are also provided in
mirTrios. More importantly, the application of available online
tools for identification of candidate genes in sporadic diseases is
still insufficient. For analysis of multiple families, an adjusted
TADA (Transmission And De novo Association) model24 was
used to prioritise candidate genes and provide a p value for stat-
istical evidence in sporadic genetic diseases on the basis of
extensive annotation.

METHODS
Accurate model for identification of DNMs
A generic VCF format file generated by GATK containing
variant information of trios is required for the detection of
DNMs. Due to the errors that occurred during sequencing,
mapping and the variant calling process, discovering them
simply by filtering based on the allowed scope of parameters,
such as depth, quality and genotype, may not be sufficient to
downsize false positive variants. Therefore, an EM algorithm
adopted by mirTrios is used to further extract potential DNMs
with closely related properties available from the VCF file
(figure 1). These properties were iteratively integrated into the
EM algorithm to strike a threshold for the identification of
DNMs. The EM algorithm encompasses two major iterative
steps:

(1) Expectation step (E step), calculating log-likelihood func-
tion on the basis of initial parameters or iterative results yielded
in previous steps (the initial values were determined on the basis
of a large amount of training data):

PðX;ZjuÞ ¼
Xn

i¼ 1

log pðxi; zijuÞ ¼
Xn

i¼ 1

log piN xi;mzi ;
X

zi

 ! !

In this formula, P(X;Zju) represents the log-likelihood of vari-
able X in the Gaussian mixture distribution Z with different
iterative process θ. In addition, n denotes the total number of
Gaussian distribution, and πi denotes the weight of Gaussian dis-
tribution N in the iterative progresses. Every Gaussian mixture
distribution zi has a variable of xi, a mean value of mzi and a
variable of Szi.

Expectation of the conditional distribution pðX;ZjuoldÞ:

Qðu; uoldÞ ¼ E½log pðX;ZjuÞ; uold%

(2) Maximisation step (M step): new parameters are generated
by maximising the log-likelihood function, replacing uold with
unew to obtain a maximised expectation Qðu; uoldÞ. In these
steps, uold represents the previous iterative process, andunew

represents the current iterative process. Z represents Gaussian
mixture distribution, and mziand Szi represents the mean value
and square deviation, respectively.

Generally, both the number of DNMs and non-DNMs from
the large amount of trio samples present normal distributions
(Gaussian distribution, Kolmogorov-Smirnov test, p<0.001),
and jointly demonstrates a Gaussian mixture distribution. Based
on the sample of Gaussian mixture distribution, we adopted the
above described EM model to distinguish DNMs and
non-DNMs, resulting in the probability:

P(x) ¼
Xn

i¼ 1

piN xi;mzi ;
X

zi

 !

In the formula,
PN

i¼ 1 pi ¼ 1, and 0 & pi & 1; n denotes the
total number of normal distribution; πi denotes the weighting
coefficient of each normal distribution represented by
Nðxi;mzi ;SziÞ. The variable xi is distributed normally with a
mean value of mzi and a variance of Szi.

All the DNM-related properties from VCF results generated
by GATK are integrated into an EM model, which will be
applied iteratively to strike a threshold for each variable that is
essential for detection of DNMs. Several properties, QUAL
(quality of alignment), Depth (total sequencing depth), QD

Figure 1 The workflow of mirTrios.
mirTrios embarks on the analysis of
multiple or single trios-based variant
call files (VCF). The workflow and
results of mirTrios comprise flowing
parts: (1) detection of de novo
mutations (DNMs) based on
expectation-maximisation (EM)
modules; (2) detection of inherited
mutations based on rigorous filter; (3)
comprehensive annotation of detected
variations; (4) detection of diagnostic
variants and prioritisation of candidate
genes based on annotated extreme
mutation; and (5) non-coding
annotation and its deleterious effect,
considering the areas where they are
located.
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(variant confidence/quality by depth), MQ0 (number of reads
with mapping quality equal to 0), PL (the maximum
Phred-scaled likelihoods for genotypes in either parents or
child), BT (depth of child/depth of parents), PRT (the
maximum percent of the covered reads in proband with refer-
ence calls), and PART (the minimum percent of the covered
reads in parents with reference calls) are closely relevant to
DNMs. Among these properties, PL, PRT and PART are related
to family information while the rest are independent from each
other. Family information is crucially important to the deter-
mination of DNMs, so we also took PL, PRT and PART into
inferential account. For those related individuals, we adopted
the Bayesian framework to classify them:

p value/ Pð pCjpM; pFÞ ¼
Pð pC; pM; pFÞ
Pð pM; pFÞ

~
Pð pC; pMÞPð pC; pFÞQ

i[ðC;M;FÞ Pð piÞ

In the formula,

Pð piÞ ¼
PLi ' ð1 ( PRTÞ i ¼ C
PLi ' ð1 ( PARTiÞ i [ ðM;FÞ

!
;

C refers to proband, F to father and M to mother.
Pð pC; pMÞ; Pð pC; pFÞ denote the probability of concurrence of
maternal homozygous and proband heterozygous, paternal
homozygous and proband heterozygous, respectively. The prob-
ability of the proband being heterozygous and the parents being
homozygous, which is required for the accurate detection of
DNMs, can be obtained by this Bayesian framework.

We used the DNMs validated by Sanger sequencing to build
the training set for our EM model. The training set containing
both true positive and negative DNMs were extracted from pre-
viously published 32 ASD trios25 and WGS datasets of our
in-house, unpublished, 32 other ASD trios. These data were
used to generate the initial values in the EM module (such as n,
πi, mzi and the variance) for each of the DNM related properties
sourced from VCF results. In particular, n refers to the two dif-
ferent Gaussian distributions, DNMs and non-DNMs; mzi refers
to the mean value of each of the properties (such as QD, MQ0,
PL, etc) in the training data. In addition, the initial weight πi
was assigned equally at the first time of the iterative process.

Detection of rare inherited mutations
mirTrios identifies inherited mutations directly from trio-based
VCF outputs generated by GATK based on the Phred-scaled
probability score and reads depth with related high sensitivity
and accuracy.9 10 The inherited models of mutations were classi-
fied into four types according to the genotypes: homozygous or
compound heterozygous mutation (Hom), X-linked hemizygous
mutation in male (Hem), transmitted heterozygous mutation
(THet), and non-transmitted heterozygous mutation (NHet).
The four inherited models cause disruption of genes at different
levels. Hom affects all copies of genes; Hem disrupts the only
copy of genes on the X chromosome in males; while THet and
NHet implicate only one copy of genes in the proband and
parents, respectively. In addition, mirTrios removed all common
mutations by user defined frequency threshold in dbSNP137,
ESP6500,26 and 1000 Genomes (released in April 2012)27

(figure 1).

Annotation of variants
mirTrios employs ANNOVAR28 to annotate DNMs and rare
inherited mutations with RefSeq (hg19, from UCSC). The anno-
tation information of mutations contains the locations in

different genomic regions (exonic, intronic, splicing, intergenic,
etc) and the effects on protein coding in coding region (stop-
gain, frameshift, synonymous, missense, etc). Loss-of-function
(LoF) mutations (stopgain, stoploss and splicing single nucleo-
tide variants (SNVs) and frameshift indels) were directly used to
prioritise disease candidate genes. Moreover, genes harbouring
only synonymous SNVs or non-frameshift indels which were
less likely to contribute to disease were eliminated from our
candidate list. For non-synonymous SNVs, though many
methods or tools have been developed to predict the degree of
damages based on evolutionary conservation and functional dis-
ruption, all of them have inevitable limitations and biases. A
proposed solution for this is to use consensus prediction or
majority vote of many methods.29 30 To this end, mirTrios inte-
grates 12 methods for functional prediction, namely SIFT
(Sorting Intolerant from Tolerant),31 Polyphen2_hvar,32

Polyphen2_hdiv,32 MutationTaster,33 MutationAssessor,34 LRT,35

FATHMM (Functional Analysis through Hidden Markov
Models),36 GERP++ (Genomic Evolutionary Rate Profiling),37

PhyloP,38 SiPhy,39 40 RadialSVM and MetaLR in dbNSFP.29 30

Users can define which of these 12 methods to be used to set
pathogenicity thresholds (figure 1).

Prioritisation of candidate genes
Since both de novo and rare inherited mutations are strongly
associated with sporadic diseases,20–23 integrating both of them
can be a highly effective way to prioritise candidate genes.
TADA incorporates de novo mutations and rare transmitted/
non-transmitted heterozygous mutations and adopts parameters
for allele frequencies and gene-specific penetrance for risk gene
identification.24 However, LoF/damaging homozygous, com-
pound heterozygous and hemizygous mutations are not taken
into account in the primary TADA model. To enrich the predic-
tion model, mirTrios made minor adjustments to the TADA
model,24 and serves to make more accurate predictions of candi-
date genes, assuming that the effects of those three mutations
are equal. The slightly adjusted TADA programme was used to
calculate the p value of each gene harbouring rare LoF or dam-
aging mutations (ie, extreme mutations) with statistical support
(figure 1).

Non-coding region analysis
Currently, an increasing number of studies have demonstrated
that the non-coding regions play important roles in gene regula-
tion, RNA processing, and biological networks.41 Mutations in
the non-coding region have been demonstrated to be associated
with many diseases. Therefore, mirTrios supplies de novo and
rare inherited mutation annotation in non-coding elements by
FunSeq41 to discover candidate disease drivers with the selected
annotation information integrated in this tool. These selected
non-coding regions were classified into six functional categories
including ENCODE annotation, sensitive region, ultrasensitive
region, known transcription factor motif, promoter or enhancer
of target genes, and hub of target. The de novo and rare inher-
ited mutations will be assigned a score ranging from 0 to 6, cor-
responding to its location at different regions, to prioritise
non-coding variants (figure 1).

RESULTS
Assessment of identification of DNMs
We tested the performance of mirTrios with WES datasets of
our in-house 20 case–parent trios with sporadic ASDs or high
myopia generated by WES. We jointly used mirTrios, PolyMutt,
DeNovoGear, DNMFilter, and Triodenovo (http://genome.sph.
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umich.edu/wiki/Triodenovo) to identify DNMs and totally gen-
erate 45 predicted DNMs in coding regions, 27 of which are
true positive validated by Sanger sequencing (figure 2A, see
online supplementary materials and methods, supplementary
table S1). We also compared the accuracy of single-sample
calling and multi-sample calling by GATK. Single-sample calling
identified 31 more predicted DNMs, but none of them are true
positive (figure 2B). By contrast, multi-sample calling has a
higher specificity (50% vs 35.5%), yet is still lower than other
methods, which suggests that multi-sample calling greatly
increases the power of inferring genotypes and haplotypes.
Despite a 96.3% sensitivity, the low specificity is a remaining
problem for detection of DNMs. Therefore a specialised tool
for DNM calling is required. mirTrios detected 27 putative
DNMs, 25 of which are true positive, presenting higher sensitiv-
ity and specificity (both 92.6%) than PolyMutt, denovoGear
and DNMFilter. Triodenovo has a somewhat higher sensitivity
(96.3%), but lower specificity (89.7%) than mirTrios. Moreover,
mirTrios provides a web-based interface for DNMs and rare
inherited mutation detection and candidate gene prioritisation
(figure 2B). For the 27 true positive DNMs, all of them were
detected by at least two tools and 17 were in the intersection of
all four tools. In addition, for the other negative calls, most of
them are detected only by one tool. These results indicate that
mirTrios achieved a relatively high sensitivity and specificity for
detection of DNMs (figure 2B).

To provide a guidance for users and define the optimal par-
ameter values for DNM detection by mirTrios, we generated a
large amount of simulated data and compared the detection
results using a range of parameters (see online supplementary
materials and methods). Results showed that some parameters
do have an effect on the specificity and sensitivity of DNM
detection (see online supplementary figure S1). Based on our
simulated data, mirTrios provide an optimal value for each par-
ameter with both high specificity and sensitivity (see online sup-
plementary materials and methods).

Data inputs
In order to facilitate the use of our tools for clinicians lacking
sufficient bioinformatics skills, mirTrios provides an intuitive
interface to allow user-defined options to customise detection
and annotation of de novo and rare inherited mutations gener-
ated by trios-based NGS in sporadic disease (figure 2B). Based
on these detected mutations and extensive annotation, mirTrios
also supports prioritisation of candidate genes. A VCF format
file (V.4) generated by GATK and a family list file containing the
genetic relationship in each nuclear family are required for
mirTrios input (figure 3A). To reduce the input size, all input
VCF format files can be compressed into .tar, .gz, .tar.gz, or .tar.
bz2 formats. mirTrios allows users to effectively upload the
VCF files via the web page or file transfer protocol (FTP) server.
After successfully uploading the data, users could start analysis
with customised parameters by which the efficiency of the
detection of DNMs and rare inherited mutations and annota-
tions could be effectively managed. More importantly, this flex-
ible customisation enables users to re-analyse uploaded data
independently through different combinations of parameters.

To make mirTrios more convenient, the mirTrios stand-alone
version supports BAM files as inputs. Public users can download
this freely available stand-alone program from the mirTrios
website. Since the size of a BAM file is generally 100-fold greater
than that of a VCF file (eg, the size of BAM and VCF files of an
exome are 5 GB and 50 MB, respectively), which is a stumbling
block for uploading, the web server of mirTrios will only support
VCF files as input. However, it is noted that mirTrios is specific-
ally developed for comprehensive analysis of sporadic diseases
instead of familiar diseases, such as three generation families. It is
considered that familiar diseases are generally used to identify
rare inherited variations, which are supposed to segregate with
disease, rather than DNMs. Therefore, the current version of
mirTrios only works on nuclear families with multiple probands
and/or siblings and their unaffected parents.

Data outputs
The analytical results can be retrieved and browsed by a unique
identifier which is generated immediately after the data are
uploaded successfully (figure 3A). A typical output includes four
sections: DNMs and annotation; rare inherited mutations and
annotation; disease candidate genes; and non-coding region ana-
lysis (figure 3B–E). These four sections are well organised to
demonstrate the results of each part. The first section illustrates
all the detected DNMs and annotations of them, including
mutation loci (exonic, splicing, 50UTR, upstream, etc), muta-
tional type (SNV, insertion and deletion), and effects on coding
region (stoploss, stopgain, non-synonymous, synonymous,
frameshift, etc), as well as the annotation in various public data-
bases, such as dbSNP138, ESP6500,26 and 1000 Genomes.27

For non-synonymous SNVs, mirTrios provides a predicted
pathogenicity score based on 12 methods, which can be modi-
fied electively. More importantly, mirTrios also supports the

Figure 2 Performance comparison of software tools for de novo
mutation (DNM) detection. (A) Venn diagram of the detected DNMs
from four tools: Triodenovo, DeNovoGear, DNMFilter, and mirTrios.
Each part of the Venn diagram represents the counts of true positive
DNMs and totally detected DNMs, respectively. (B) Comparison of
sensitivity and specificity in the seven tools. mirTrios also supports rare
inherited mutation detection, comprehensive annotation, and candidate
genes prioritisation.
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detection of known diagnostic mutations and disease-related
genes based on five resources: OMIM (Online Mendelian
Inheritance in Man),42 MGI,43 HGMD (Human Gene
Mutation Database),44 COSMIC (Catalogue of Somatic
Mutations in Cancer),45 and ClinVar.46 This is powerful for the
identification of known functional mutations and novel candi-
date genes. The second section showed all classes of detected
rare inherited mutations (homozygous or compound heterozy-
gous, X-linked hemizygous, and transmitted/non-transmitted
heterozygous mutations) with detailed annotation similar to
DNMs. The disease candidate genes section displays all the
potential disease-associated genes, which contain at least one
extreme mutation (damaging de novo or rare inherited muta-
tion) with a given p value. In this section, mirTrios clearly
provide the count of LoF/damaging DNMs, and transmitted/
non-transmitted rare inherited mutations in each gene. The
optional non-coding region analysis results will be generated if
users provide the whole genome trios sequencing data. In this
section, mirTrios shows all detected de novo and rare inherited
mutations located in the functional non-coding region. Based on
the sequence location, mirTrios provides a score ranging from 0
(less deleterious) to 6 (more deleterious) to estimate the deleteri-
ous effect of variations.

DISCUSSION
The rapid advances of WES/WGS technologies have greatly
facilitated clinical genetic diagnosis genome-wide.47 48 For

sporadic disease, despite the minor role of common mutations
or the environment, LoF/damaging DNMs is an important
source of causality.49 In addition, rare inherited mutation also
contributes to the risk of sporadic disease, such as ASD22 and
schizophrenia.50 The vast amount of mutations generated by
NGS poses multiple challenges for the identification of func-
tional mutations and candidate genes.

At present, although a few tools have been developed to detect
DNMs or candidate genes by NGS, there are still no public online
services available for comprehensive analysis of trios-based NGS
data. Therefore, we have developed a novel and comprehensive
platform, mirTrios, for the analysis of trio-based WES/WGS VCF
results, which allows accurate detection and annotation of DNMs
and rare inherited mutation in coding and non-coding regions. For
the average geneticist and clinician, the integrated framework of
mirTrios avoids the cumbersome process of complex installation,
redundant operations, and requirement for high-performance
computational capability. For multiple trios analysis, mirTrios also
provides an integrated framework for known diagnostic variant
identification and candidate gene prioritisation based on the
detected de novo and rare inherited mutations from the large
amount of data generated by NGS. In essence, mirTrios provides
comprehensive and meaningful data for users to study in depth the
genetic basis of sporadic diseases.

mirTrios provides an intuitive interface for users to upload
files directly by web page or ftp address, which can be widely
used by researchers to explore the functional mutation and

Figure 3 The snapshot of the results of mirTrios. (A) Trios-based variant call files (VCF) and family list are loaded as input along with several
user-selected options. (B) Detected de novo mutations (DNMs) and rare inherited mutations. (C) Comprehensive annotation of detected variations.
(D) Known diagnostic variant identification and candidate gene prioritisation. (E) Estimates of the deleterious effect of variations in the non-coding
region.
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candidate genes in sporadic disease. mirTrios is freely available
for non-commercial use and will be updated regularly to keep
up with the latest resources of the implemented databases.
Restricted by the lack of a sophisticated algorithm for detecting
de novo CNV and SV (structural variation), mirTrios currently
only provides point mutation analysis. In this aspect, mirTrio
will be updated with state-of-art de novo CNV/SV detection
and integrate these tools with optimal accuracy and specificity.
We believe mirTrios will be very helpful for the study of spor-
adic disease.

IMPLEMENTATION
mirTrios is freely available at http://centre.bioinformatics.zj.cn/
mirTrios/. Documentation and example data can be found on
the website. The web client of mirTrios was implemented inde-
pendently and has been successfully tested with different
releases of Microsoft Internet Explorer 11.0, Firefox 30.0,
Google Chrome 35.0, and Safari 5.1 (under different versions
of MacOS, Microsoft Windows and Linux). mirTrios was con-
structed under an Apache/PHP/MySQL environment on the Red
Hat Enterprise 5.5 Linux operating system. The uploaded VCF
data will be analysed on our five computational nodes, with 16
CPUs and 32 GB of RAM in each node.
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The lipid transfer reactions and the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START)
genes have a major role in lipid metabolism. However, START genes and their physiological functions in teleost
fishes are relatively unknown. Through genome-wide screening, we identified and annotated 91 START genes in
5 teleost species. Although START domain-containing proteins are augmented in teleost genomes relative to tetra-
pod genomes, a similar number of genes are shared between them. Asymmetry of paralogous gene loss within the
teleost START family and an extra copy of some START genes in teleosts resulting from fish-specific genome dupli-
cation have been demonstrated. A distinct transcriptional expression pattern within members of some START
groups under different developmental stages suggests divergent functions within the same group in the develop-
mental process. In addition, an asymmetric molecular evolution rate deviating from the neutral expectation has
been observed in 7 of 14 teleost fish extra-duplicated pairs. The present study provides valuable information for in-
creasing our understanding of the evolution and gene expression divergence under developmental stages of the
START gene family in teleost fishes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gene duplication, which has long been regarded as one of the major
forces of evolution, can facilitate the acquisition of new functions of dupli-
cated genes through neo-functionalization (Ohno, 1970) or partitioning
of the ancestral gene functions between descendant duplicated genes
by sub-functionalization (Conant and Wolfe, 2008; Force et al., 1999; He
and Zhang, 2005; Lynch and Force, 2000). Tandemduplication, segmental
duplication andwhole-genome duplication (WGD) aremajor gene dupli-
cationmechanisms in eukaryotes. WGD is particularly intriguing because
it has been regarded as a parsimonious evolutionary innovation of gene
duplication (Haldane, 1932; Ohno, 1970; Taylor and Raes, 2004). It is

well accepted that fish-specific genome duplication (FSGD) occurred
prior to the teleost radiation (Amores et al., 1998; Christoffels et al.,
2004; Jaillon et al., 2004; Teng et al., 2010; Vandepoele et al., 2004;
Woods et al., 2005). However, the total number of genes in teleost species
is not twice that present in tetrapod species, which prompted us to inves-
tigate the gene loss event after FSGD and to investigate whether fish-
specific duplicated paralogs evolve at similar rates after duplication. As
the results of various gene duplication and loss events, gene families pro-
vide a unique source for studying the evolutionary relationships between
genes both within and between organisms. Changes in family size due to
lineage-specific gene duplication or loss might provide insights into the
evolutionary forces that have shaped eukaryotic genomes (Demuth
et al., 2006). Thus, inferring an evolutionary scenario for a gene family is
essential to understanding the phenotypic diversification of eukaryotic
organisms (Hanada et al., 2009; Sato et al., 2009).

The steroidogenic acute regulatory protein (StAR)-related lipid trans-
fer (START) domain, named after themammalian 30 kDa StAR protein, is
a protein module of around 200 amino acids implicated in the control of
several aspects of lipid biology, including lipid trafficking, lipid metabo-
lism and cell signaling (Alpy and Tomasetto, 2005; Soccio and Breslow,
2003). Mutation or misexpression of some START proteins was also
reported to link to some pathological processes, including genetic disor-
ders, autoimmune disease and cancer (Alpy and Tomasetto, 2005).Mem-
bers of the START domain family have been shown to bind different
ligands, such as sterols (e.g., StAR or STARD1) and lipids (e.g., PCTP or
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STARD2), and exhibit enzymatic activity. Some other functional domains
that were found associated with START in animals include pleckstrin
homology (PH), sterile alpha motif (SAM), Rho-type GTPase-activating
protein (RhoGAP), and 4-hydroxybenzoate thioesterase (4HBT) (Schrick
et al., 2004; Soccio and Breslow, 2003). Ligand binding by START domain
can regulate the activity of other domains within multi-domain proteins,
such as the RhoGAP domain, the homeodomain and the thioesterase
domain (Iyer et al., 2001; Ponting and Aravind, 1999). START domain is
evolutionarily conserved in plants and animals. Fifteen START domain-
containing proteins (STARD1–STARD15) have been identified in humans
(Soccio and Breslow, 2003), and hundreds have been determined in
invertebrates, bacteria andplants. However, only a very fewSTARThomo-
logs have been reported in teleost fishes, which are the largest and most
diverse group of vertebrates. The availability of sequenced and assembled
genomes of zebrafish (Danio rerio), fugu (Takifugu rubripes) (Aparicio et
al., 2002), Green Spotted Puffer (Tetraodon nigroviridis) (Jaillon et al.,
2004), medaka (Oryzias latipes) (Kasahara et al., 2007) and three-spined
stickleback (Gasterosteus aculeatus) has provided an opportunity for the
genome-wide screening of START homologs and comparative analysis
in teleost fish species.

In this study, we identified and annotated the START gene family
members in teleosts through genome-wide screening and we investi-
gated their transcript expression profile under experimental conditions,
domain composition and phylogenetic relationships. In addition, a rela-
tive rate test was used to examine whether one of the duplicates has
evolved at an accelerated rate following the duplication. With such an
in-depth investigation, we expected to provide a detailed case in study-
ing how genes evolve after gene duplication, and provide some data for
future physiological function research of START genes in fishes.

2. Materials and methods

2.1. Data sets and phylogenetic analysis

Fifteen human START proteins were used as the query sequences
in BLASTP and TBLASTN searches (Eb1e−5) against the NCBI (Maglott
et al., 2010) or Ensembl databases (March 2011) (Flicek et al., 2011)
of human, mouse, chicken, anole lizard,Western clawed frog, coelacanth,
zebrafish, medaka, Green Spotted Puffer, three-spined stickleback, fugu
and Sea squirts. Each matching sequence was used iteratively to search
the databases until no new sequence was found. Additionally, a hidden
Markovmodel (HMM) search (Johnson et al., 2010) was done in the pro-
teome databases of the species listed above using the START domain
(PFAM, PF01852). All protein sequences derived from the collected candi-
date START genes were further examined using the PFAM program
(Mistry and Finn, 2007) with the default cut-off parameters. The amino
acid sequence alignment of START domains was generated using
MUSCLE (Edgar, 2004) with the default setting. A bootstrap consensus
phylogenetic tree was constructed using the maximum-likelihood meth-
od in MEGA5 (Tamura et al., 2011) under the JTT+G model.

2.2. Analysis of synteny

All predicted genes within 20 Mb of each human or mouse START
paralog were obtained using the BioMart mode in Ensembl (March
2011). Genes exhibiting orthologous relationship in both species
(human/mouse) and supported by phylogenetic analysis were selected
for syntenic analysis. Neighboring genes flanking the chicken, anole liz-
ard,Western clawed frog, zebrafish,medaka, fugu, Green Spotted Puffer
or three-spined stickleback START paralogs were obtained using the
BioMart mode in Ensembl from dataset of the chicken (WASHUC2),
anole lizard (AnoCar2.0), Western clawed frog (JGI_4.2), zebrafish
(Zv9), medaka (MEDAKA1) fugu (FUGU4), Green Spotted Puffer
(TETRAODON8) or three-spined stickleback (BROADS1) genome, re-
spectively. Blocks of synteny were constructed on the basis of the
orthologous relationship of genes among different species.

2.3. Transcriptional expression analysis of teleost START genes

The genome-wide microarray data of zebrafish (Domazet-Loso
and Tautz, 2010), medaka (Iwahashi et al., 2009), Green Spotted Puff-
er (Chan et al., 2009) and three-spined stickleback were obtained from
the NCBI Gene Expression Omnibus (GEO) with accession numbers
GSE24616, GSE15380, GSE12976 and GSE34783, respectively. Extraction
and filtration of each microarray data were processed as previously
described (Chan et al., 2009; Domazet-Loso and Tautz, 2010; Iwahashi
et al., 2009). Probe sets corresponding to the putative zebrafish STARTs
were identified fromAgilent Zebrafish (V2)Gene ExpressionMicroarrays,
NimbleGen Oryzias latipes_TIGR_rel5 (GFC023) 27 k array, Agilent cus-
tom 44 K Tetraodon array or Agilent-016492 three-spined stickleback
44 K 60 nt oligo array version 1.0. If more biological replicates were
used in a specific experiment, such as 2–4 replicates in zebrafish, 5 repli-
cates in three-spined stickleback and 3 replicates in medaka, mean of the
expression values among the replicates were used. For genes with more
than one set of probes, themean of expression values was considered. Fi-
nally, the log2 transformed transcript intensity data were hierarchically
clustered on the basis of the Euclidean distance with complete linkage
in the Cluster program (de Hoon et al., 2004), and the relative transcript
accumulation was represented in a color code with green or red showing
the lower or higher levels of transcriptional expression, respectively.

2.4. Divergence and relative rate test of duplicated teleost START pairs

The coding sequences of the duplicated teleost START pairs were
aligned following the amino acid alignment by CodonAlign 2.0 (http://
homepage.mac.com/barryghall/CodonAlign.html). Pairwise calculation
of dN/dS between these teleost START pairs is estimated with the yn00
program of PAML4 (Yang, 2007). Further, nonparametric relative rate
tests were done with amino acid sequences to investigate whether one
of these teleost START pairs has evolved at an accelerated rate following
the duplication using MEGA (Tamura et al., 2011). To test whether
some sites were under positive selection, several site-specific models
(M0, M1, M2, M3, M7 andM8) and branch site test 2 were used to detect
positive selection using the codeml program implemented in PAML4
(Yang, 2007).

3. Results

3.1. Identification and phylogenetic analysis of START genes

Through extensive similarity-based searches, we identified 91 tele-
ost START genes: 18 in Green Spotted Puffer, three-spined stickleback
or fugu, 21 in zebrafish, and 16 in medaka (Supplemental Table 1).
The length of STARTs in teleosts ranged from 198 to 1928 amino acid
residues, and the number of exons ranged from 5 to 19 (Supplemental
Table 1 and Fig. 1). In teleosts, about half of the START domain-
containing proteins (48/91) are multi-domain proteins. Functional do-
mains associated with START in teleosts include pleckstrin homology
(PH) in STARD11s(COL4A3BPs), sterile alpha motif (SAM), Rho-type
GTPase-activating protein (RhoGAP) in STARD8s, STARD12s(DLC1s)
and STARD13s, and 4-hydroxybenzoate thioesterase (4HBT) in
STARD14s(ACOT11s), consistent with earlier reports for non-teleosts
(Alpy and Tomasetto, 2005; Schrick et al., 2004; Soccio and Breslow,
2003) (Supplemental Fig. 1). Although START domain-containing pro-
teins are augmented in teleost genomes relative to mammalian genomes
(Supplemental Table 1), similar gene numbers are found for each. In
order to investigate the evolutionary relationship among these teleost
START genes, 91 teleost START genes, 18 coelacanth and 80 tetrapod
START orthologs, and 9 ascidian START genes were used in phylogenetic
analysis by themaximum-likelihoodmethod inMEGA5. The analysis un-
ambiguously defined 8 START groupswith high bootstrap values (Fig. 1);
namely, the STARD1/STAR, STARD4, RhoGAP START, STARD2, STARD10,
STARD11, thioesterase START and STARD9 group. The gene number of
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each group varies dramatically, ranging from 11 to 42. Some orthologs of
tetrapod START genes, such as STARD6, are absent from all teleost fishes
and some are absent from a certain fish lineage, such as STARD4_Tn and
STARD5_Ol. Several START genes (STARD1, STARD8, STARD10, COL4A3BD,
STARD13 and ACOT11) have multiple copies in certain fish genomes, un-
like mammalian genomes, indicating that extra rounds of duplication
have occurred in the teleost lineage (Fig. 1).

3.2. Syntenic analysis

Orthologous genes flanking each START gene define a syntenic con-
servation among tetrapods and teleosts (Fig. 2; Supplemental Table 2,
Supplemental Fig. 2 and Supplemental Fig. 3). Although some orthologs
of tetrapod START genes, such as STARD6, are absent from all teleost
fish genomes, syntenic regions of STARD6 genes can be observed in tele-
osts (Supplemental Fig. 3). The same applies to some fish lineage-specific
lost genes, e.g. STARD4_Tn, ACOT12_Tn, and STARD_Ol (Supplemental
Fig. 3), suggesting that these genes were present in ancestral teleosts
but were lost after the divergence of teleost fishes. Extra copies of some
START genes, such as STARD1, STARD8, STARD10, COL4A3BP, STARD13
and ACOT11, were observed in some fish genomes compared tomam-
malian genomes, indicating that extra duplication in the teleost lin-
eage or mammalian-specific gene losses might have occurred in the
evolutionary history of these genes (Postlethwait, 2007). Therefore,

more tetrapod lineages (chicken, lizard and frog) were used in our
synteny analysis to investigate their evolutionary history. Although fre-
quent gene-linkage disruptions, micro-inversions or rearrangements oc-
curred in teleosts, we could find some traces of extra paralogons around
each of the STARD1, -8 or -10 genes in teleost and non-mammalian tet-
rapod genomes (Supplemental Fig. 2). For example, 2 chicken or fish
paralogons STAR-1 and STAR-2 are accompanied by 1 mammalian STAR
paralogon. It appears that extra paralogs of these 3 genes were generated
in the earlier vertebrates before thedivergence of the Teleostomi followed
by mammalian-specific gene losses. Thus, the difference in gene number
of STARD1, -8 or -10 genes between teleosts and mammals is most likely
because ofmammalian-specific gene losses (Postlethwait, 2007). Howev-
er, extra paralogons around each of the COL4A3BP, STARD13 and ACOT11
genes were found in teleost genomes but not in tetrapod genomes. For
example, the tetrapod START13 paralogon has 2 fish paralogons,
START13-1 and START13-2 (Fig. 2). Each of STOML3, DCLK1, SLC7A1,
TRPC4, FREM2, SPG20,NBEA,B3GALTL, FRY andHMGB1onhuman chromo-
some 13 near START13 has two co-orthologs on medaka chromosomes
13 and 14, three-spined stickleback groups VII and I, Green Spotted Puffer
chromosomes 16 and 7 and zebrafish chromosomes 15 and 10, which
suggests that extra copies of the COL4A3BP, STARD13 and ACOT11
genes in teleosts might be the results of FSGD (Kasahara et al., 2007). Al-
though no extra copy of the STARD9 gene was found in some fish ge-
nomes, 2 conserved fish paralogons flanking each gene were also

Ol.Ch.12

COL4A3BP-1

Tr.scaf f old_27

COL4A3BP-1

Tr.scaf f old_4

COL4A3BP-2

Tn.Ch.12

COL4A3BP-1

Tn.Ch.4 Ga.groupXIV

COL4A3BP-1

Ga.groupXIII

col4a3bp-2

Ol.Ch.9

COL4A3BP-2

Gg.Ch.Z

COL4A3BP

Mm.Ch.13

Col4a3bp

Hs.Ch.5

COL4A3BP

Hs.Ch.1

ACOT11

Mm.Ch.4

Acot11

Gg.Ch.8

ACOT11

Ol.Ch.17

ACOT11-2

Ol.Ch.4
ACOT11-1

Ga.groupVIII

ACOT11-1

Ga.groupIII

ACOT11-2

Tn.Ch.1

ACOT11-1
Tn.Ch.Un_random

ACOT11-2

Dr.Ch.8Dr.Ch.2

acot11-2

Hs.Ch.13

STARD13

Gg.Ch.1

STARD13

Ol.Ch.13Ol.Ch.14
STARD13-2

Ga.groupI

STARD13-1

Ga.groupVII

STARD13-2

Tn.Ch.7
STARD13-2

Tn.Ch.16

STARD13-1

Dr.Ch.15

stard13-1

Dr.Ch.10

stard13-2

Dr.Ch.20 Dr.Ch.17Tn.Ch.14 Tn.Ch.10

STARD9

Ga.groupXVIII
Ga.groupXV

STARD9

Ol.Ch.24 Ol.Ch.22

STARD9

Gg.Ch.5Mm.Ch.2

Stard9

Hs.Ch.15

STARD9

STARD9 stard9

A B

C D

acot11-1

COL4A3BP-2

Fig. 2. Extra paralogons surrounding (A) STARD13 (B) COL4A3BP, (C) ACOT11 and (D) STARD9 genes in teleost genomes. (A) The tetrapod START13 paralogon has two fish
paralogons, the START13-1 paralogon and the START13-2 paralogon. Each of the STOML3, DCLK1, SLC7A1, TRPC4, FREM2, SPG20, NBEA, B3GALTL, FRY and HMGB1 on human chromo-
some 13 near START13 has two co-orthologs in medaka chromosomes 13 and 14, three-spined stickleback groups VII and I, Green Spotted Puffer chromosomes 16 and 7, zebrafish
chromosomes 15 and 10. (B) The COL4A3BP-1 and COL4A3BP-2 fish paralogons are accompanied by one tetrapod START11 paralogon. SV2C, which is near COL4A3BP on human
chromosome 5, has two co-orthologs located in medaka chromosomes 12 and 9, three-spined stickleback groups XIII and XIV, Green Spotted Puffer chromosomes 12 and 4,
zebrafish chromosomes 5 and 21, fugu scaffolds 4 and 27. (C) Each ACOT11 paralogon defines a synteny with a high degree of conservation among the studied tetrapod and
fish species. (D) Although no extra copy of START9 genes was found in some fish genomes, two conserved fish paralogons flanking each gene were observed, suggesting extra du-
plication of this STARD9 gene that occurred in the teleost ancestor, but was lost before the divergence of zebrafish. The positions of genes on chromosomes are not drawn to scale.

Fig. 1. (A) Phylogenetic analysis of the START gene family and detailed phylogeny of (B) STARD1/STAR, (C) RhoGAP START and (D) STARD10. The bootstrap consensus phylogenetic tree
was constructed using the maximum-likelihoodmethod inMEGA5, and the numbers indicate the percentage bootstrap support. The symbol ‘◄’ represents the compressed START group
of STARD1/STAR, RhoGAP START or STARD10, which are expanded in (B), (C) or (D), respectively. *Gene predicted using FGENESH+ software (http://linux1.softberry.com/berry.phtml).
Dr, Danio rerio; Tr, Takifugu rubripes; Tn, Tetraodon nigroviridis; Ol, Oryzias latipes; Ga, Gasterosteus aculeatus; Lc, Latimeria chalumnae; Xt, Xenopus tropicalis; Ac, Anolis
carolinensis; Gg, Gallus gallus; Mm, Mus musculus; Hs, Homo sapiens; Ci, Ciona intestinalis.
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observed. It is possible that extra duplication of this STARD9 gene oc-
curred in the teleost ancestor but was lost before divergence of the
zebrafish.

3.3. Divergence and relative rate test of extra-duplicated teleost START pairs

Modes of selection can be estimated by the ratio of the number of
nonsynonymous substitutions per nonsynonymous site (dN) to the num-
ber of synonymous substitutions per synonymous site (dS), i.e. dN/dS>1
indicates positive selection; dN/dSb1 indicates purifying selection; and
dN/dS=1 indicates neural evolution (Yang, 2007). The combination of
phylogenetic and syntenic analyses revealed extra copies of COL4A3BP,
STARD13 and ACOT11 genes in teleosts. These teleost genes were selected
for further evolutionary analysis. Although positive selection has been
pervasive during vertebrate evolution (Studer et al., 2008), none of the
three site-specific positive selection models or branch site test 2 of
PAML predicted any site under positive selection for any teleost START
gene listed above with probabilities >95% (data not shown), and
pairwise comparison of dN/dS between these duplicate pairs was mark-
edly b1 (Fig. 3 Supplemental Table 3), suggesting that these ancient
duplicates likely have been subject to purifying selection. An asymmetric
molecular evolution rate deviating from the neutral expectation occurs in
7 of 14 fish-specific duplicated teleost START pairs (Table 1), suggesting
that one paralog might evolve faster than another after duplication.

3.4. Differential transcript profiling of teleost START genes under
experimental conditions

The level at which a gene is expressed under some conditions can
provide useful clues to gene function. To examine the transcript abun-
dance patterns of the START genes, we used a comprehensive expression
analysis with the publicly available microarray data for zebrafish
(Domazet-Loso and Tautz, 2010), medaka (Iwahashi et al., 2009),
Green Spotted Puffer (Chan et al., 2009) and three-spined stickleback.
All of the 18 three-spined stickleback START genes and 8 of the Green
Spotted Puffer START genes were expressed in all detected tissues, but
themRNA level of different genes peaked in different tissues. The differ-
ence of steady-state levels of START transcripts between tissues was
greater than that between environmental populations. In zebrafish, 14
START geneswere detected to be expressed during the ontogenetic pro-
gression phase, and expression profiles of themdefined clearly different
developmental stages (Fig. 4). Differences in transcript abundance
levels of these START genes, such as the 400-fold difference of mean ex-
pression level between stard10-3 and stard10-2 during these stages,
were observed. It indicated that the contributions of different STARTs
to growth and development might be associated with their expression
levels. According to the transcript profiling, 3 zebrafish START gene
clusters were observed and the 8 START groups defined in our earlier
phylogenetic analysis were all included in these clusters except the
data-deficient STARD9 groups, but these clusters were not highly relat-
ed with gene phylogeny. Contrary expression patternswithinmembers
of the STARD1/STAR, STARD4 and STARD10 groups in zebrafish,
STARD1/STAR in Green Spotted Puffer and STARD2 in medaka were
observed, suggesting divergent functions within the same group
during the developmental process.

Transcriptional expression analysis of fish-specific duplicated START
paralogs revealed that zebrafish COL4A3BP paralogs and three-spined
stickleback ACOT11 paralogs have divergent expression patterns. Of
the 3 duplicated zebrafish START10 paralogs identified by our phyloge-
netic study, stard10-1 and stard10-2, but not stard10-3, have similar tran-
scriptional expression patterns (Fig. 4). It appears that the transcriptional
expression patterns of the paralogs have diverged during long-term
evolution, suggesting functional diversification of duplicated genes.

4. Discussion

As the major organic constituents of fish, lipids function as major
sources of metabolic energy for growth, reproduction and migration

Table 1
Tajima relative rate tests of teleost START duplicate genesa.

Test group Mtb M1c M2d χ2 Pe

col4a3bp-2_Dr/col4a3bp-1_Dr with COL4A3BP_Hs 389 68 26 18.77 0.00001
COL4A3BP-1_Dr/COL4A3BP-2_Tn with COL4A3BP_Hs 490 43 48 0.27 0.60018
COL4A3BP-1_Ol/COL4A3BP-2_Ol with COL4A3BP_Hs 495 40 45 0.29 0.58759
COL4A3BP-1_Ga/COL4A3BP-2_Ga with COL4A3BP_Hs 488 31 35 0.24 0.62246
COL4A3BP-1_Tr/COL4A3BP-2_Tr with COL4A3BP_Hs 496 40 44 0.19 0.66252
stard13-1_Dr/stard13-2_Dr with STARD13_Hs 705 55 74 2.80 0.09436
STARD13-1_Tn/STARD13-2_Tn with STARD13_Hs 606 73 149 26.02 0.00000
STARD13-1_Ga/STARD13-2_Ga with STARD13_Hs 616 62 161 43.95 0.00000
STARD13-1_Tr/STARD13-2_Tr with STARD13_Hs 619 71 155 31.22 0.00000
acot11-1_Dr/acot11-2_Dr with ACOT11_Hs 255 25 18 1.14 0.28575
ACOT11-1_Tn/ACOT11-2_Tn with ACOT11_Hs 356 36 66 8.82 0.00297
ACOT11-1_Ol/ACOT11-2_Ol with ACOT11_Hs 362 47 56 0.79 0.37519
ACOT11-1_Ga/ACOT11-2_Ga with ACOT11_Hs 375 41 64 5.04 0.02480
ACOT11-1_Tr/ACOT11-2_Tr with ACOT11_Hs 368 42 70 7.00 0.00815
a The Tajima relative rate test was used to examine the equality of evolutionary rate between teleost START duplicate pairs.
b Mt is the sum of identical sites and divergent sites in all three sequences tested.
c M1 is the number of unique differences in the first paralog.
d M2 is the number of unique differences in the second paralog.
e If Pb0.05 the test rejects the equal substitution rates between the two duplicates.

Fig. 3. Individual dS and dN/dS of paralogous START gene pairs in the teleost.
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(Tocher, 2003). In addition, the fatty acids of fish lipids are rich in ω3
long chain, highly unsaturated fatty acids that have particularly impor-
tant roles in animal nutrition. However, the metabolic processes regu-
lating deposition and mobilization of fat in fish species are poorly
understood (Mommsen et al., 1999). Lipid transfer reactions and

START genes have amajor role in lipidmetabolism, and its disorder is po-
tentially linked to some cardiovascular diseases in human (Tall et al.,
1986). However, START genes and their physiological functions in fish
are relatively unknown. Here, we present a comparative genomic study
of START paralogs in the teleost lineage, and asymmetric evolution and
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Fig. 4. Relative transcript abundance profiles of the teleost START genes under different conditions. (A) Transcript profiling of the zebrafish START genes (GEO GSE24616) at different
developmental stages. (B) Transcriptional expression pattern of three-spined stickleback (GEO GSE12976) START genes in different tissues in marine (LITC) and freshwater (FTC)
populations. (C) Transcript abundance pattern of START genes (GEO GSE15380) in different medaka strains (HdrR; JPRI) under different test conditions (A0, aeration and a static
water supply; A2, aeration and two times semistatic; A4, aeration and four times semistatic; N0, nonaeration and static; N2, nonaeration and two times semistatic; N4, nonaeration
and four times semistatic) or feeding types (Artemia, Artemia nauplii; T.M., tetramine; O.T., otohime; M.E., medakanoesa). (D) Transcriptional expression pattern of Green Spotted Puffer
(GEO GSE34783) STARTs in different tissues. The transcript abundance levels for the teleost START genes were clustered using hierarchical clustering based on Euclidean distance with
complete linkage in the Cluster program. Each row corresponds to the normalized expression profile of a particular gene and their names are shown. The relative transcript accumulation
is represented in a color code with green or red showing the lower or higher levels of transcriptional expression, respectively.
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distinct transcriptional expression of these genes in teleosts have been
observed. According to our phylogenetic and syntenic analyses, we pro-
vide a hypothetical scenario of teleost START evolution (Fig. 5). It is likely
that before the divergence of tetrapods and teleosts, 3 (STARD1/8/10)
of the 15 ancestral STARTs gave rise to extra duplication followed by
mammalian-specific gene losses. After that, extra paralogs of STARTs
were generated in the teleost lineage during the FSGD event, followed
by the loss of many copies of START genes. After the divergence of
zebrafish and Neoteleostei, STARD4/15 and one copy of STARD8 were
lost from the Neoteleostei. During successive divergence of the
Tetraodontidae and Smegmamorpha and speciation, one copy of
STARD5/13 was lost in medaka. This led to the preservation of dif-
ferent ancient STARTs in different teleost fish species.

Eight not 6 START groups were found in this study, because more
START genes were used in this study compared to earlier reports
(Alpy and Tomasetto, 2005; Soccio and Breslow, 2003). Asymmetry of
paralogous gene retention was found between or within each teleost
START group. For example, in the STARD1/STAR group, all STARD1 but
not all STARD3 were retained in the teleost genome; all teleost STARD6
but partially STARD4 lost in the STARD4 group. Members within the
same group might have similar functions. This was confirmed by the ob-
servation that (1) the STARD1/STAR group (STARD1 and STARD3) has
similar biophysical and functional properties (Tuckey et al., 2004) and
mice lacking the STARD3 appear normal and show no defect in steroido-
genesis (Kishida et al., 2004); and (2) expression of STARD4 or STARD5
stimulates steroidogenesis by P450scc and liver X receptor reporter
gene activity, indicating that both of them function in cholesterol metab-
olism (Soccio et al., 2005). It is possible that the lost genes were function-
ally unimportant or redundant to the teleost, or compensationwithin the
same group was available. Intriguingly, the clusters of gene/transcript
expression profiles define clearly different developmental stages or envi-
ronmental conditions, whereas they are not highly related to gene phy-
logeny. The transcriptional expression differences within members of
the STARD1/STAR groupwere observed in different tissues of Green Spot-
ted Puffer and three-spined stickleback. Earlier studies demonstrated that
STARD1 and STARD3 are differentially localized in cells (Alpy et al., 2001)
and STARD3 can function in steroidogenesis in organs that do not express
STARD1, such as the placenta (Watari et al., 1997). It is possible that
tissue-specific expression and subcellular localizations within the same
group lead to the observed expression difference during development,
becausewhole fertilized eggs, embryos or larvaewere used in the expres-
sion study (Domazet-Loso and Tautz, 2010).

It is worthy to mention that 3 teleost STARD10 paralogs were found
in our phylogenetic study. Two STARD10 genes that reside in the same
chromosomewere found in 3 of the 5 teleost fishes, with the exception
of incompletely assembled fugu scaffolds or medaka ultracontig. We
speculate that tandem duplication occurs in this gene. Because of fre-
quent gene-linkage disruptions, micro-inversions or rearrangements
in teleosts, we cannot find further evidence to support the hypothesis
of the occurrence of tandemduplication during the evolutionary history
of this gene. The expression pattern of duplicated genes can provide
useful clues to gene function, and will be of benefit to understanding
the driving force and the functional consequence of paralogs (Prince
and Pickett, 2002). Zebrafish START10 paralogs have inconsistent tran-
scriptional expression patterns during developmental phases. The tran-
script abundance of STARD10-2 and STARD10-3 peaked in the ovary and
testis of Green Spotted Puffer. Diversified STARD10 paralogsmight have
a role in energy metabolism by mobilizing phosphatidylcholine during
development in the testis (Yamanaka et al., 2000). We suspect that the
expression difference increases the adaptability of duplicated genes to en-
vironmental changes, thus conferring a possible evolutionary advantage.

Asymmetric evolution might be an indicator of neo-functionalization.
Some duplicated genes exhibiting asymmetric protein sequence evolu-
tion have been reported (Brunet et al., 2006; Conant and Wagner, 2003;
Jordan et al., 2004; Lynch and Force, 2000; Nembaware et al., 2002; Van
de Peer et al., 2001). This asymmetry has been regarded as a contribu-
tion to Ohno's model (Kellis et al., 2004), which proposes that the
slow copy maintains an ancestral role and rate of change; while the
fast copy evolves to optimize novel functions (Ohno, 1970). Our study
revealed fish-specific duplicated extra copies of col4a3bp, stard13 and
acot11 genes in teleosts. When these genes were selected for further
evolutionary analysis, we found that an asymmetric molecular evolu-
tion rate deviating from the neutral expectation occurs in 7 of 14 dupli-
cated pairs (Table 1). Similar to our analysis, the duplicated teleost
HoxA clusters or type III receptor tyrosine kinase (RTK) genes were
characterized as evolvement in an asymmetric manner (Braasch et al.,
2006; Wagner et al., 2005). These results indicate that asymmetric di-
vergence of fish-specific paralogs might be a common feature, and
this feature might contribute to some fish-specific behavior or the di-
versity of teleost fishes.

In conclusion, asymmetric evolution and divergent transcriptional
expression of START genes have occurred in teleost genomes. This de-
tailed analysis of the START gene family in teleost fishes has provided
a case in studying how genes evolve after gene duplication, and might
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(three-spined stickleback)
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Fig. 5. Hypothetical scenarios of teleost START evolution. The inferred evolutionary events (gene duplication and gene loss) are indicated on the respective branches.
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provide some insights into the physiological function divergence of
START genes in fishes.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.gene.2013.01.058.
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