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Abstract    Previous  studies  have  revealed  that  patients  with  hypertrophic  cardiomyopathy  (HCM)  exhibit
differences  in  symptom severity  and prognosis,  indicating potential  HCM subtypes  among these  patients.  Here,
793 patients with HCM were recruited at an average follow-up of 32.78 ± 27.58 months to identify potential HCM
subtypes  by  performing  consensus  clustering  on  the  basis  of  their  echocardiography features.  Furthermore,  we
proposed a systematic method for illustrating the relationship between the phenotype and genotype of each HCM
subtype  by  using  machine  learning  modeling  and  interactome  network  detection  techniques  based  on  whole-
exome sequencing data.  Another  independent  cohort  that  consisted of  414 patients  with  HCM was recruited to
replicate the findings. Consequently, two subtypes characterized by different clinical outcomes were identified in
HCM.  Patients  with  subtype  2  presented  asymmetric  septal  hypertrophy  associated  with  a  stable  course,  while
those with subtype 1 displayed left ventricular systolic dysfunction and aggressive progression. Machine learning
modeling  based  on  personal  whole-exome  data  identified  46  genes  with  mutation  burden  that  could  accurately
predict subtype propensities. Furthermore, the patients in another cohort predicted as subtype 1 by the 46-gene
model  presented increased left  ventricular  end-diastolic  diameter  and reduced left  ventricular  ejection fraction.
By employing echocardiography and genetic screening for the 46 genes, HCM can be classified into two subtypes
with distinct clinical outcomes.
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 Introduction

Hypertrophic  cardiomyopathy  (HCM)  is  the  most
common inherited heart  disorder,  affecting 1 in 200–500
adults  worldwide  [1,2].  It  is  characterized  by  left
ventricular  (LV)  hypertrophy  and  measured  via
echocardiography  or  other  imaging  techniques.  HCM  is
believed to be the most common cause of sudden cardiac
death among adolescents and young adults. However, the
majority  of  patients  with  HCM  experience  normal  or
near-normal  life  and  typically  remain  clinically  silent

[3,4]. Significant differences in clinical manifestation and
prognosis among individuals with HCM have elicited the
interests  of  researchers  to  investigate  the  underlying
mechanisms.

Several  hypotheses  have  been  proposed  to  illustrate
extreme  phenotypic  variability.  One  such  hypothesis
defines  a  pattern  of  disease  progression  for  HCM as  the
end-stage  or “burnout” phase  [5];  this  process  is
consecutive  from  onset  time  to  end  stage,  with  adverse
cardiac  remodeling.  Patients  in  the  early  phases  are
frequently  asymptomatic,  and  hypertrophic  phenotype  is
generally  absent.  As  the  disease  evolves,  advanced
functional  deterioration  occurs  in  the  left  ventricle;  this
condition is defined as either a hypokinetic-dilated phase
or  a  restrictive  phenotype.  However,  previous  cohort
studies  have  suggested  that  only  a  small  proportion  of
patients  with  HCM  progressed  to  the  end  stage  [6,7].
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Why some  patients  undergo  remodeling  and  progression
while others do not has not yet been elucidated. Its highly
diversified  clinical  symptoms  have  prompted  us  to
speculate that HCM may have distinct subtypes.

Recent  studies  have  revealed  that  patients  with  HCM
caused  by  different  mutations  exhibit  differences  in
symptom  severity  and  prognosis  [8,9].  Genes  or
modifiable  risk  factors  reportedly  influence  the
phenotypic  severity  of  HCM  [10].  However,  modifier
genes  and  their  variants  remain  largely  unknown.
Moreover,  the  current  approach  is  insufficient  for
quantitatively  estimating  risk  for  HCM  progression,  and
such estimation is highly desired in clinical practice.

In  the  current  study,  a  consensus  clustering  approach
was applied to  identify  the clinical  subtypes of  HCM on
the  basis  of  echocardiography  data.  Interestingly,  two
major  clinical  subtypes  were  identified,  delineating  the
diversity of clinical outcomes in HCM. By using machine
learning methods, we identified subtype-associated genes
that  could  effectively  distinguish  HCM  subtypes,
providing further insights into the genetic context, clinical
prognosis, and potential interventions. Collectively, these
findings  may  help  bridge  knowledge  gaps  among
phenotypes, genotypes, and prognoses.

 Materials and methods

 Study population

The  study  cohort  comprised  793  sporadic  patients  with
HCM from 2007  to  2019  recruited  from Tongji  Hospital,
Wuhan,  China.  HCM  was  diagnosed  as  a  maximal  end-
diastolic  LV wall  thickness ≥15 mm in echocardiographs
or  cardiac  magnetic  resonance  images,  in  the  absence  of
abnormal  loading  conditions  or  other  cardiac  or  systemic
diseases  capable  of  producing  the  magnitude  of  hyper-
trophy,  e.g.,  congenital  heart  diseases,  aortic  stenosis,
uncontrolled  hypertension,  or  phenocopied  conditions.
More limited hypertrophy (13–14 mm) was diagnosed for
patients with a family history of HCM [11,12]. Peripheral
blood samples were obtained from all the participants upon
enrollment.  All  clinical  variables,  particularly  echocardio-
graphy  characteristics,  24  h  Holter,  and  natural  history,
were  collected  from  patients’ medical  records  that  were
blinded to patient genotype at the start of the study.

 Clinical subtype identification

The  R  package  ConsensusClusterPlus  v1.48.0  was
employed  to  identify  clinical  subtypes  on  the  basis  of
echocardiography  features  [13].  This  function  provides
quantitative  stability  evidence  for  determining  cluster
count  and  membership  in  an  unsupervised  analysis.  In
particular,  the  consensus  clustering  method  involves
subsampling  from  a  set  of  items,  and  it  determines

clusters  of  specified  cluster  counts.  Then,  pairwise
consensus values, i.e.,  the proportion in which two items
occupied the same cluster out of the number of times they
occurred in the same subsample, are calculated and stored
in  a  symmetric  consensus  matrix  for  each  cluster  count.
Figure  S1  shows  all  echocardiography  variables  that  are
commonly  used  to  evaluate  cardiac  structure  and
function.  Among  them,  three  variables  with  more  than
20% missing  data  were  excluded  from  further  analysis.
The  seven  remaining  variables,  namely,  the  thickness  of
the  interventricular  septum  (IVS)  and  left  ventricular
posterior  wall  (LVPW),  left  ventricular  end-diastolic
diameter  (LVEDD),  left  atrial  diameter  (LAD),  left
ventricular  ejection  fraction  (LVEF),  and  the  ratios  E/A
(mitral  inflow  velocity  curves)  and  septal  E/Eʹ  (annular
tissue Doppler signals) ratios, were used for the clustering
analysis.  Agglomerative  hierarchical  clustering  was
performed  with  a  subsampling  ratio  of  0.8  for 1000
iterations.  Consensus  matrices,  subtype-consensus  plots,
and  item-consensus  plots  were  used  to  determine  the
optimal number of subtypes.

 Simplification of clustering by creating a decision tree

The  overrepresentation  or  underrepresentation  of  a
variable in each subtype was calculated via v-test with the
catdes function of the R package FactoMineR v2.0 on the
basis  of  hypergeometric distribution.  The contribution of
each echocardiography variable to subtype clustering was
measured  through  permutation  accuracy  importance  by
using random forest.  To construct  a  simple  decision tree
model that can discriminate patient subtypes, we used the
ctree  function  of  the  party  v1.3-5  package,  a  conditional
interference  framework  that  estimates  a  regression
relationship  via  binary  recursive  partitioning.  In  parti-
cular, patient subtypes determined via the aforementioned
consensus clustering were used as input for decision tree
modeling  to  identify  the  key  parameters  necessary  for
distinguishing  among  patient  subtypes,  and  a  classifier
that could be applied to external cohorts was created.

 Follow-up and clinical outcomes

Follow-up  with  the  recruited  patients  was  conducted  by
March  2019  through  face-to-face  interviews  and/or
telephone  conversations.  The  primary  end  point  was
death  due  to  cardiovascular  diseases,  including  heart
failure-related and sudden deaths. Other clinical outcomes
included all-cause death, heart transplant, nonfatal stroke,
and progression to New York Heart Association (NYHA)
class III/IV.

 Whole-exome sequencing (WES) for all the patients

DNA  extraction  from  whole  blood  and  WES  was
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performed  on  an  Illumina  platform.  The  details  are
described in the Supplementary Methods (Table S1).

 Role of HCM-associated genes in subtype
classification

To  compare  the  proportion  of  patients  that  carried
mutations  in  known  HCM-associated  genes  (Table  S2)
between  subtypes  [14],  we  identified  putative  causal
mutations in these genes, and the recommendations of the
American  College  of  Medical  Genetics  and  Genomics
(ACMG) were adopted to determine the pathogenicity of
each variant [15]. In particular, only rare nonsynonymous
or  truncating  variants  (nonsense,  frameshift,  and  splice
sites) in HCM-associated genes, with MAF ≤0.1% in the
East Asian population from public databases, and labeled
deleterious  in  functional  prediction  methods,  were  then
subjected  to  ACMG  evaluation.  In  particular,  only
truncating  variants  were  retained  for  evaluating  the TTN
gene.  Subsequently,  we  compared  the  proportions  of
patients  that  carried  mutations  in  each  of  these  genes
between  different  subtypes  to  determine  whether
mutations in some of these genes were linked to subtype
classification.  Moreover,  we  compared  the  prognoses  of
patients  that  carried  mutations  in  these  genes  with  those
that did not carry mutations to evaluate the role of HCM-
associated  genes  in  predicting  the  outcomes  of  patients.
The  overall  effect  of  these  mutations  in  predicting
subtype  classification  and  survival  was  assessed  via  the
area  under  the  receiver  operating  characteristic  (ROC)
curve (AUC), wherein the status of carrying mutations for
each patient was regarded as a predictor.

 Novel subtype-specific gene identification based on
rare variants

We then estimated the effects of rare variants in a whole-
exome  scale  on  subtype  classification,  not  merely  in
known  HCM-associated  genes.  A  total  of  136 654
nonsynonymous and truncating variants with MAF < 1%
in  both  our  population  and  East  Asian  populations  from
public  databases  (1000  Genomes  Project,  Exome
Aggregation  Consortium,  and  Genome  Aggregation
Database)  were  subjected  to  subsequent  analyses.  After
gene-based  annotation,  multiple in-silico computational
methods  were  employed  for  the  functional  prediction  of
variants.

To quantify the mutation burden for each gene, we first
assessed  the  pathogenicity  of  the  included  variants  by
using  several in-silico computational  methods,  with  the
best  performance  in  functional  prediction,  including
REVEL,  VEST3,  MetaLR,  and  M-CAP  [16].  For  each
variant,  the  average  score  calculated  among  the  four
algorithms was considered the combined prediction score.
The variant-level prediction scores across the entire gene

were accumulated as  an overall  mutation burden for  this
gene.  Accordingly,  a  score  matrix  with gene  numbers ×
sample numbers was  generated,  where  the  mutational
profile  for  each  sample  was  represented  by  17 033  gene
burden scores.

To  explore  the  differences  in  genetic  basis  between
subtypes,  we  attempted  to  model  the  additive  effect  of
gene  mutation  burden  on  HCM  subtype  propensity.
Considering  that  the  number  of  genes  was,  relatively,
considerably  larger  than  the  number  of  samples,  which
would lead to an overfitting problem and generate models
with  poor  generalization  capability,  we  introduced  the
L1-norm to penalize the weight of the model parameters;
that  is,  we  aimed  to  find  the  best  compromise  between
model  complexity  and  empirical  risk  and  identify  a
minimum  number  of  feature  genes  to  best  explain  the
observations.  Consequently,  we  adopted  a  logistic
regression model with L1 regularization, which can force
coefficient values to be 0, generating a sparse solution to
selecting the leading genes of each subtype.

 Protein–protein interaction network analysis

Subsequently,  we  seeded  the  subtype-specific  genes
identified above into the STRING Interactome integrated
protein–protein  interaction  (PPI)  to  build  networks
through  selected  connection  pairs,  with  evidence
confidence  scores  over  400.  Then,  we sought  to  identify
modules  that  were  tightly  condensed  across  the  entire
network  by  using  the  InfoMap  algorithm.  Members
within a module are likely to work collectively to perform
biological  functions.  The  aforementioned  procedures
were  implemented  using  NetworkAnalyst  v3.0  [17].
Finally, the biological functions of the observed modules
were  determined  through  enrichment  analysis  and
annotated with the Enrichr web server [18].

 Individual PPI networks for HCM with reduced
LVEF

We  retrieved  the  published  proteome  expression  dataset
PXD008934  from  ProteomeXchange,  which  contained
the  proteomic  changes  characterized  via  mass
spectrometry  in  nine  human  heart  tissues  with  HCM
accompanying  preserved  (53.12% ±  3.75%, n =  4)  or
reduced  ejection  fraction  (25.00% ±  9.35%, n =  5).
Individual networks for samples with reduced LVEF were
built  following  the  procedures  proposed  by  Maron et  al.
[19].  A  Pearson’s  correlation  matrix  was  first  calculated
for each gene pair from all samples with preserved LVEF.
Then, each sample with reduced LVEF was added and the
correlation  matrix  was  recalculated.  Gene  pairs  with
correlations that were significantly changed were mapped
to the STRING Interactome. This procedure resulted in a
network  that  represented  the  dysfunctional  or  perturbed
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system  of  the  corresponding  sample.  We  then  used  a
hypergeometric  test  to  determine  whether  an  indivi-
dualized  network  was  significantly  enriched  with  the
identified  genes  and  other  genes  associated  with  HCM
endophenotypes  [19].  The  Benjamini–Hochberg  pro-
cedure was applied for multiple hypothesis tests.

 Validation by second independent cohort

External validation is required to ascertain the correlation
between genetics and subtypes; this procedure verifies the
robustness  and  generalization  of  the  genetic  model  for
clinical  practice.  Thus,  we  enrolled  another  independent
cohort that consisted of 414 patients with HCM from the
same  hospital  (Tongji  Hospital,  China).  WES  and
genotyping  were  performed  in  accordance  with  the
procedures described above.

 Statistical analyses

Continuous  variables  were  compared  using  an  unpaired
Student’s t-test, while categorical variables were analyzed
using  the  chi-square  or  Fisher’s  exact  test.  Survival
curves  were  constructed  in  accordance  with  the

Kaplan–Meier method, and comparisons were performed
using  the  log-rank  test.  Cox  proportional  hazard  models
were  used  to  assess  the  effects  of  multiple  clinical
features on the risk of outcome events. AUC was used to
evaluate  the  performance  of  the  binary  classification
model.  Repeated  stratified  fivefold  cross-validation  was
used to perform this evaluation. All reported probabilities
were two-sided and considered significant at P < 0.05.

 Results

 Consensus clustering identified two HCM subtypes

An  unsupervised  consensus  clustering  approach  was
applied  to  determine  the  number  of  possible  subtypes  of
all  the  patients  with  HCM  by  using  echocardiography
data. We observed that these patients were clustered into
two–six subtypes. The two subtypes (k = 2) were selected
for  further  analysis  because  of  their  better  performance
and  stability  (Fig.  S2).  We  further  measured  the
differences in clinical features between the two subtypes.
As  indicated  in Table 1,  more  male  subjects  were  found
with subtype 1 than with subtype 2 (83.8% versus 63.7%,
respectively; P <  0.001).  The  mean  LVPW,  LAD,  and

  

Table 1    Characteristics of subtypes in the study population
Subtype 1 (n = 229) Subtype 2 (n = 564) P value

Age of onset (year) 51.14 ± 13.89 51.41 ± 14.41 0.806

Age at enrollment (year) 51.79 ± 14.16 52.99 ± 14.11 0.281

Gender = male (%) 192 (83.8) 359 (63.7) < 0.001

Smoke (%) 92 (40.2) 193 (34.2) 0.133

Drink (%) 59 (25.8) 136 (24.1) 0.69

CAD (%) 73 (31.9) 123 (21.8) 0.004

Diabetes (%) 46 (20.1) 100 (17.7) 0.5

Systolic blood pressure (mmHg) 129.30 ± 18.37 127.17 ± 15.85 0.103

Diastolic blood pressure (mmHg) 79.36 ± 12.38 75.98 ± 10.88 < 0.001

IVS (mm) 15.61 ± 2.42 17.81 ± 4.74 < 0.001

LVPW (mm) 13.35 ± 2.65 11.64 ± 3.02 < 0.001

Apex (mm) 10.20 ± 1.29 11.24 ± 3.08 < 0.001

LAD (mm) 46.22 ± 7.26 39.72 ± 7.23 < 0.001

LVEDD (mm) 55.82 ± 9.21 44.98 ± 5.03 < 0.001

LVEF (%) 44.67 ± 12.37 64.39 ± 7.87 < 0.001

LVEF < 50% (%) 142 (62.6) 20 (3.6) < 0.001

Resting LVOTG (mmHg) 33.00 ± 42.58 41.77 ± 54.57 0.41

Valsalva LVOTG (mmHg) 29.67 ± 25.09 52.90 ± 41.89 0.104

E/A 26.41 ± 47.20 2.28 ± 10.57 < 0.001

E/Eʹ 22.45 ± 11.94 17.38 ± 8.47 < 0.001

Values are n (%) or mean ± SD.
CAD, coronary artery disease; IVS, interventricular septum; LVPW, left ventricular posterior wall; LAD, left atrial diameter; LVEDD, left ventricular end-diastolic
dimension; LVEF, left ventricular ejection fraction; LVOTG, left ventricular outflow tract gradient.
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LVEDD  were  greater  in  patients  with  subtype  1
compared with in patients with subtype 2 (LVPW: 13.35
mm  versus  11.64  mm,  respectively, P <  0.001;  LAD:
46.22  mm  versus  39.72  mm,  respectively, P <  0.001;
LVEDD:  55.82  mm versus  44.98  mm,  respectively, P <
0.001),  while  patients  with  subtype  1  exhibited  less
thickness  of  IVS  (15.61  mm  versus  17.81  mm, P <
0.001).  An apparent  reduction in LVEF was consistently
observed  in  subtype  1  (44.67% versus  64.39%, P <
0.001).  Both  subtypes  suffered  from  LV  diastolic
dysfunction,  while  subtype  1  exhibited  not  only  reduced
filling  function  but  also  damage to  LV compliance  (E/A
ratio: 26.41 versus 2.28, P < 0.001), suggesting reliability
for  two  subcluster  divisions.  Further  propensity  score
matching  to  adjust  for  potential  bias  in  baseline
characteristics suggested the same findings (Table S3 and
Fig. S3).

 Supervised decision tree modeling to enhance clinical
utility

On  the  basis  of  the  two  identified  subtypes,  we  further
tested  whether  a  simplified  classifier  with  a  minimal
subset  of  these  echocardiographic  variables  used  in
consensus  clustering  could  still  assign  patients  to  their
corresponding  subtype.  We  first  used  random  forest  to
measure  the  importance  of  each  echocardiographic
variable.  The  result  suggested  that  the  preceding
clustering  was  largely  driven  by  LVEF,  LVEDD,  E/A,
LAD,  LVPW,  and  IVS  (Fig. 1C).  We  then  applied
decision  tree  modeling  by  using  the  subtypes  from  the
preceding  clustering  as  input  to  create  a  classifier  that
comprised  the  six  variables  above  (Fig. 1D).  The  result
revealed  that  the  HCM  patients  could  still  be  stratified
into  the  two  subtypes  with  an  AUC  of  0.93  (95%
confidence interval 0.91–0.95).

 Association of subtypes with clinical outcome

The  above  findings  revealed  two  distinct  subtypes  of
HCM on the basis of multiple methods. Subsequently, we
verified  whether  the  two  subtypes  were  associated  with
different  prognoses.  Among  the  775  (97.7%)  patients
included  in  the  final  evaluation,  with  a  mean  follow-up
time  of  32.78  ±  27.58  months,  we  observed  higher  all-
cause mortality in subtype 1 compared with in subtype 2
(20.2% versus  11.4%, P =  0.002).  The  18  patients  who
were  lost  to  follow-up  were  excluded  in  the  survival
analysis.  Further  survival  analysis  (Fig. 2)  showed  that
patients  with  subtype  1  had  a  higher  likelihood  of
experiencing primary end point events (cardiac mortality:
HR  2.68, P <  0.001;  cardiac  death  and  heart  transplant
rate:  HR  2.83, P <  0.001;  all-cause  mortality:  HR  2.11,
P < 0.001) and developing moderate or severe congestive
symptoms  (NYHA  class  III/IV)  (HR  2.69, P <  0.001)

compared  with  patients  with  subtype  2.  In  accordance
with  an earlier  study [20],  age,  female  sex,  NYHA class
III/IV  symptoms,  and  history  of  atrial  fibrillation  were
predictors  of  cardiac  mortality  (Table  S4).  Subtype  1
remained  independently  associated  with  a  higher  risk  of
cardiovascular  death  (HR  2.24, P =  0.0015)  compared
with  subtype  2  after  using  multivariable  modeling
inclusive of all significant univariate predictors (Table S5
and  Fig.  S4).  When  adjusted  for  LVEF,  subtype  1
remained  an  independent  risk  factor  for  NYHA  class
III/IV  (HR  1.48, P =  0.047)  (Table  S6).  In  general,
subtype  1  patients  were  associated  with  poor  overall
survival probability compared with subtype 2 patients.

 Effects of HCM-associated genes on subtyping and
disease prognosis

The  distinct  clinical  characteristics  of  the  two  subtypes
have  prompted  us  to  explore  the  underlying  genetic
determinants.  We  first  focused  on  the  evaluation  of
HCM-associated  genes  (Table  S7).  For  the  majority  of
HCM-associated genes, the proportion of carriers was not
different  between  the  subtypes,  except  for MYBPC3 and
MYH7,  whose  carriers  were  significantly  enriched  in
subtype 2 relative to that in subtype 1 (Figs. S5 and S6).
We  further  compared  the  risk  of  experiencing  cardiac
death,  and  no  significant  difference  was  observed
between  carriers  and  noncarriers  for  most  of  the  genes
associated with HCM (Fig. S7). Consistently, the overall
effect assessment suggested that mutations in these genes
could  hardly  discriminate  one  subtype  from  the  other
(AUC = 0.54) or predict survival at the end of the follow-
up period (AUC = 0.62) (Fig. S8).

 Machine learning modeling to identify novel genetic
determinants

The  weak  contribution  of  known HCM-associated  genes
to  the  subtypes  and  outcomes  observed  above  has
prompted speculation that  other  novel  disease-modifying
genes  may  be  present  in  HCM.  Given  that  rare  variants
have  a  relatively  larger  effect  size  but  cannot  be
effectively  captured  by  single-variant  analyses  [21–23],
we  constructed  machine  learning  models  based  on  the
accumulated  mutation  pathogenicity  of  rare  variants  at
exome-wide gene level to distinguish the subtypes. Figure
illustrates the process of searching for an optimal C value
(the  inverse  of  regularization  strength),  which  was
determined  by 1000 times  (random  shuffle)  stratified
fivefold cross-validation. The optimal C value was set to
0.033  for  a  minimum  average  log  loss.  At  the  given C
value,  51  genes  among  the  whole  17  033  gene  set  were
assigned with nonzero weights,  with 46 genes exhibiting
an  increased  mutation  burden  in  subtype  1  relative  to
subtype  2  (Table  S8).  Subsequently,  we  constructed
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Fig. 1    Consensus clustering identified two subtypes that correlated with various clinical features. (A) Hierarchical subtype heat map shows the
clinical  characteristics  and  echocardiography  features  of  the  two  subtypes.  (B)  Characteristic  plots  of  the  two  subtypes,  including  their  most
representative echo variables. A positive value indicates overrepresentation of this variable in the applicable subtype. A negative value indicates
underrepresentation of the corresponding variable.  (C) Variable importance for clustering measured by random forests.  (D) Supervised decision
tree modeling provided availability in clinical practice.
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models  with  46  genes  to  verify  whether  they  could
accurately  predict  subtype  classification.  As  shown  in
Fig. 3B,  the  machine  learning  model  based  on  the  46
genes  presented  superior  predictive  power  with  an
average AUC of approximately 0.81. Hence, these genes
are  probably  the  most  distinguishing  features  of  the
subtypes.

Moreover,  correlation  analyses  suggested  a  positive
linear link between LVEDD and probability for subtype 1
predicted by the 46-gene model (R = 0.25, P = 5.8e−13)
and  a  negative  link  between  LVEF  and  probability  for
subtype 1 (R = −0.34, P = 2.2e−16) (Fig. S10). A similar

trend  was  observed  in  the  survival  analysis,  wherein  the
likelihood of  experiencing cardiac death and progression
to  NYHA  class  III/IV  increased  following  a  rise  in
probability  for  subtype  1  (Fig.  S11).  Combined,  these
results indicate that the identified genes exerted a stronger
effect  on  the  severity  and  prognosis  of  HCM  relative  to
known HCM-associated genes.

 Network analyses to unravel underlying pathobiology

To  further  explore  the  pathobiology  that  accounted  for
subtype,  we  subsequently  mapped  the  46  machine-

 

 
Fig. 2    Event-free survival stratified by subtypes as determined by the consensus clustering. Kaplan–Meier curves for (A) cardiovascular death,
(B) the combined outcome of cardiovascular death and heart transplant, (C) all-cause death and (D) lifelong likelihood of progression to NYHA
class III/IV, respectively. Age was used as the time scale, and events occurring before and during the follow-up were included. The probability
values were calculated with the log-rank test.
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identified  genes  onto  human  PPI  networks  to  determine
associated  biological  pathways.  Subsequent  community
detection  identified  36  modules  that  were  tightly
condensed internally. Expectedly, the GO term annotation
for these modules suggested links with the cardiovascular
system to a certain extent (Fig. S12). Given the dominant
role  of  LVEF  in  subtyping,  published  proteomic
expression  profiles  from  HCM  patients  with  reduced
LVEF  compared  with  those  with  preserved  LVEF  were
used  to  generate  individual  PPI  networks  (Table  S9).
Enrichment  analysis  showed  that  the  46-gene  set  was

significantly enriched across the patient networks, except
for  sample  HCMrEF5  (Fig. 3C,  Table  S10).  In  addition,
we determined that some of the individual networks were
also enriched for the HCM endophenotypes identified in a
previous  study  (Fig. 3C)  [19].  Combined,  these  results
provided  insights  into  the  pathobiological  complexity  of
HCM subtypes at the network medicine level.

 Second cohort validation

To  validate  the  correlation  of  identified  genes  with

 

 
Fig. 3    Machine learning model construction. (A) Machine-identified genes with increased mutation burden in subtype 1. (B) ROC curves for the
models  based  on  the  46  feature  genes  with  different  classifiers.  AUC  was  determined  via  stratified  fivefold  cross-validation.  (C)  Individual
networks for HCM patients with reduced LVEF and enrichment analysis of the 46-gene set and endophenotype for each patient network. The rows
correspond to the gene ontology (GO) classifications for genes, and the columns denote samples.
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phenotypic  variability,  we  enrolled  for  another
independent  cohort  that  comprised  414  patients  with
HCM recruited from Tongji Hospital (Wuhan, China) and
diagnosed  with  the  same  criterion,  and  performed  WES.
The  same  mutation  burden  weighting  that  used  rare
variants  for  the  46  genes  was  followed.  The  subtype
status  of  these  patients  was  then  predicted  using  the
aforementioned  genetic  model,  which  was  fitted  by  the
first  cohort  based  on  the  46  genes.  To  avoid  confusion,
the  predicted  subtype  for  each  individual  was  labeled  as
“group” rather  than “subtype”.  As  presented  in Table 2,
101 patients  were  predicted  for  Group  1,  while  the  rest
were  labeled  for  Group  2.  Significant  differences  still
existed between the two groups in terms of IVS, LVEDD,
and  LVEF.  Compared  with  the  characteristics
summarized  in  the  first  cohort,  Group  1  presented
increased  LVEDD  (53.47  mm  versus  49.57  mm, P <
0.001) and impaired LVEF (53.00% versus 57.92%, P =
0.002),  while Group 2 was characterized by more severe
IVS (15.73 mm versus 17.09 mm, P = 0.002). Moreover,
we ranked samples into quartiles in accordance with their
predicted  possibilities  for  subtype  1  and  observed  the
same progression trends across quartiles (Fig. S13).

To  test  the  clinical  utility  of  the  genetic  model,  we
applied  the  previous  decision  tree  derived  from  echo-
based  clustering  (Fig. 1D)  to  the  second  cohort  and
determined  the  corresponding  clinical  subtypes,  namely,
true labels. The predictive power of the genetic model in

the second cohort is depicted in Fig. S14, with an AUC of
0.64. Accounting for the effects of traditional risk factors
on cardiovascular diseases, we collected 12 other clinical
variables  of  these  patients  to  construct  an  integrated
model. These clinical variables were as follows: sex, age,
smoking, alcohol intake, systolic blood pressure, diastolic
blood  pressure,  serum  triglycerides,  total  cholesterol,
high-density  lipoprotein  cholesterol,  low-density
lipoprotein  cholesterol,  coronary  atherosclerosis,  and
diabetes.  By  integrating  these  factors  into  our  genetic
model,  we  achieved  a  better  interpretation  of  HCM
subtyping  with  significantly  increased  AUCs  of  0.84  in
the  first  cohort  and  0.70  in  the  second  cohort.  Overall,
these results supported the assumption that the 46 genes,
although  with  limited  coverage  in  all  the  patients,  were
associated  with  HCM  phenotypic  variability.  The
integration of genetic and nongenetic factors is capable of
recognizing  patients  who  tend  to  suffer  from  adverse
remodeling, albeit only partially.

 Discussion

Overall,  the  comprehensive  clustering  analysis  of
echocardiography  features  from  793  HCM  cases
uncovered  two  major  clinical  subtypes,  which  exhibited
distinct  manifestation  and  genetic  basis.  Patients  with
subtype  2  presented  a  form  of  asymmetric  septal
hypertrophy and were associated with a stable course. By
contrast,  posterior  free  wall  involvement,  LV  systolic
dysfunction,  and  unfavorable  outcomes  were  more
common in  subtype  1.  The  subsequent  machine  learning
model  construction  identified  46  most  distinguishing
genes  with  increased  mutation  burden  in  subtype  1.
Network  analysis  revealed  functional  modules  and
biological pathways involved in subtypes, along with the
enrichment  of  the  identified  genes  in  individual  PPI
networks for HCM patients with reduced LVEF. External
validation  in  a  second  cohort  of  414  cases  provided
evidence in favor of the correlation between genetics and
subtypes.  We  intended  to  draw  an  overall  picture  of  the
genetic  basis  accounting  for  subtypes  at  the  levels  of
variant, gene, and network, without subjective choices in
any steps.

Previous studies have noted that the lifelong process of
LV  remodeling  and  progressive  dysfunction  occurred  in
some HCM patients [24]. The results of large-scale cohort
studies  implied  the  inadequacy  that  not  all,  but  only  a
small  proportion,  of  patients  developed  to  this  end  stage
[7].  Otherwise,  the  substantial  heterogeneity  that  drives
for such different progression is less clear. Therefore, we
discussed  the  possibility  that  HCM  subtypes  exist
naturally  and  their  differences  in  a  genetic  context,
intending to view this disease as inclusive of its  clinical,
morphological, and molecular diversities. In contrast with
previous  studies  that  were  based  on  natural  history

  

Table 2    Characteristics of second population subtyping by the
genetic model

Group 1 (n = 101) Group 2 (n = 313) P value

Age at enrollment (year) 53.42 ± 12.58 53.47 ± 11.72 0.97

Gender = male (%) 85 (84.2) 233 (74.4) 0.044

Smoke (%) 51 (51.0) 135 (43.8) 0.211

Drink (%) 24 (24.0) 85 (27.6) 0.48

CAD (%) 48 (48.0) 130 (42.2) 0.31

Diabetes (%) 21 (21.0) 72 (23.3) 0.633

IVS (mm) 15.73 ± 3.12 17.09 ± 3.93 0.002

LVPW (mm) 12.10 ± 2.60 12.41 ± 2.55 0.291

Apex (mm) 10.86 ± 2.76 10.97 ± 2.71 0.725

LAD (mm) 43.36 ± 7.47 43.01 ± 7.62 0.685

LVEDD (mm) 53.47 ± 9.04 49.57 ± 7.74 < 0.001

LVEF (%) 53.00 ± 15.46 57.92 ± 12.80 0.002

Resting LVOTG (mmHg) 26.41 ± 26.65 43.99 ± 58.51 0.124

Valsalva LVOTG (mmHg) 59.00 ± 38.17 61.49 ± 60.49 0.911

E/A 1.14 ± 0.81 1.12 ± 0.90 0.914

E/Eʹ 18.81 ± 10.52 17.68 ± 8.01 0.273

Values are n (%) or mean ± SD.
IVS, interventricular septum; LVPW, left ventricular posterior wall; LAD, left
atrial diameter; LVEDD, left ventricular end-diastolic dimension; LVEF, left
ventricular ejection fraction; LVOTG, left ventricular outflow tract gradient.
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observation  and  subjective  division  [25],  we  conducted
unsupervised  clustering  in  a  large-scale  HCM  cohort  by
taking  advantage  of  machine  learning  approaches,
wherein  relevant  structural  and  functional  data  recorded
via echocardiography were used as input to the clustering
algorithm.  Therefore,  patients  were  automatically
clustered  into  several  groups  in  accordance  with  their
similarities in echocardiography features.

Considering  the  limitations  in  viewing  HCM  through
the narrow prism of a single sarcomere gene mutation, we
comprehensively inspected all  genes based on WES data
from  different  hierarchies.  In  contrast  with  classical
burden  tests  and  SKAT  [26],  which  are  based  on  allele
frequency  or  variance  component  score  tests,  we
weighted  rare  variants  with  pathogenicity  instead  of
regression  coefficients  and  aggregated  them  into  a
combined  mutation  burden  for  each  gene.  Given  the
limited  power  for  detecting  genetic  susceptibility  with  a
relatively  small  sample  size,  we  adopted  a  feature
selection  algorithm  based  on  a  penalized  linear
classification  model  that  measured  the  contribution  of
genes  to  subtype  status.  The  initial  objective  could  be
substantially  interpreted  to  explain  and  predict  the
morphological  abnormalities  of  HCM  with  personal
genetics.  The  minimal  subset  of  46  genes  identified  by
the  L1-penalized  regression  model  achieved  the  most
accurate  prediction  of  HCM  subtypes.  HCM  has  been
widely regarded as a monogenic disease, in which causal
mutation  in  sarcomere  genes  is  believed  to  be  the
prerequisite  and  a  major  determinant  of  the  phenotype
[27].  In  contrast  with  this  hypothesis,  a  poor  predictive
performance was observed in the model based on HCM-
associated  genes.  These  observations  further  support  the
new  perspective  that  HCM  clinical  phenotype  may  be
defined  by  the  genetic  context  rather  than  solely  by  a
single  genetic  event  [28].  Similarly,  significant  increases
in the predictive power for  both cohorts  after  integrating
the  genetic  model  with  clinical  risk  factors  reflected
nongenetic contributions in disease processes. However, a
considerable  proportion  of  patients  with  adverse
remodeling in the second cohort could not be captured by
the  46-gene  model.  Such  limited  coverage  emphasized
the  variability  in  molecular  mechanisms  among  patients
with  the  same  HCM  diagnosis.  Combined,  these  points
underscore  the  need  to  expand  the  spectrum  of
determinants and modifying factors in HCM remodeling.

Apart from applying echo-based decision trees to match
patients  to  their  corresponding  subtypes,  personal
genetics  seems  more  applicable  in  offering  an  early
evaluation  of  HCM  progression  risk.  Genetic  testing  is
recommended for patients fulfilling the diagnostic criteria
for HCM due to an increased understanding of the genetic
basis  of  HCM  and  the  rapidly  evolving  high-throughput
sequencing technologies. Our results suggest that patients
may benefit from genetic testing in other aspects, not only

in  the  diagnosis  of  HCM.  A  widening  range  for  genetic
testing should be recommended, because sequencing and
analysis should not be limited to HCM-associated genes.
Evaluating  the  risk  for  different  progression  based  on
personal  genetics  and  traditional  risk  factors  is  possible
and  may  provide  valuable  advice  for  early  intervention
and disease management.

In the absence of experimental evidence, 46 genes were
agnostically  and  automatically  selected  and  considered
subtype-related  genes.  The  machine  learning  algorithm
only considered genes whose increased mutational burden
in  subtype  1  would  contribute  to  prediction  accuracy,
which might carry a risk of false positives. With the aim
of testing whether these selected genes are involved in the
pathogenesis  of  HCM  and  determine  their  functional
context, we mapped them onto a human PPI network and
identified  tightly  clustered  topological  modules  linked
with  subtype  1.  Expectedly,  the  subsequent  GO  and
Kyoto  Encyclopedia  of  Genes  and  Genomes  enrichment
analyses  for  these  modules  indicated  that  some  modules
were directly involved in the cardiovascular system, such
as  cholesterol  metabolism,  mitochondrial  oxidative
metabolism,  and  sarcomere  organization  (Fig.  S12).  We
also noted some novel or less reported pathways, such as
the  mTOR  signaling  pathway,  PI3K-Akt  signaling
pathway,  and  aminoacyl-tRNA  biosynthesis,  which  may
promote  new  perspectives  for  HCM  [29,30].  Previous
studies  have  proposed  that  individualized  PPI  networks
can  provide  critical  insight  into  determining  patient-
specific  and  clinically  relevant  HCM  pathophenotypic
characteristics  [19,31].  Thus,  we utilized the information
provided  by  individual  networks  of  LVEF-reduced
patients  to  check  the  role  of  these  feature  genes  and
relevant  endophenotypes  that  were  unique  to  specific
patients.  Our  results  revealed  that  the  46-gene  set  was
enriched across the individual networks of HCM patients
with reduced LVEF and provided further support  for  the
involvement  of  these  genes  in  HCM.  These  results  also
suggested  that  mutation  signatures  in  these  genes  were
implicated  in  phenotypic  heterogeneity.  Further  work  is
required  to  establish  the  relationship  between  these
modules  and  HCM subtypes  and  to  elucidate  their  exact
mechanisms.

 Study limitations

Our study was based on the echocardiographic features of
793  patients  with  HCM  from  a  large-scale  cohort.
Compared with magnetic resonance imaging, echocardio-
graphy may be  limited  in  providing detailed  information
for  patients  with  poor  acoustic  windows  or  in  detecting
LV apical and anterolateral hypertrophy. In addition, our
patients  were  recruited  from  a  single  center  and  an  age
span existed in the cohort. A higher rate of progression to
heart  failure  and  mortality  was  observed  in  this  study
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compared with previously published cohorts, which might
be explained by the inadequate attention given to HCM in
China.  Patients  with  HCM  only  visit  a  hospital  when
evident symptoms emerge. Meanwhile, the links of genes
and  pathways  obtained  from  machine  learning  modeling
with  HCM  subtypes  should  be  further  confirmed  by
animal  and  cytological  experiments.  In  addition,  limited
proteins were available for proteome analysis, resulting in
incomplete individual network construction.

 Conclusions

This study was designed to explore the potential subtypes
of  HCM  in  a  large-scale  cohort.  On  the  basis  of
echocardiography  features,  we  propose  a  new  classifi-
cation  scheme  based  on  a  distinct  genetic  context.
Personal  whole  exome-based  machine  learning  methods
have  been  used  to  identify  HCM  subtype-associated
genes  and  subtype  prediction  model  construction.  These
findings  may  contribute  to  our  understanding  of  the
correlations among phenotypes, genotypes, and prognoses
in HCM.
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